A testing set for Preparata-like codes
Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 2, pp. 5-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The reconstruction of an object of a given class by its intersection with some (so-called testing) set is studied. For the class, we consider Preparata-like codes, i. e. nonlinear codes of length $n=2^{2m}-1,$ $m=2,3,\dots,$ with code distance $5$ and twice the size of a linear code of the same length and distance. We determine conditions under which the union of a few concentric spheres forms the testing set for Preparata-like codes.
Keywords: Hamming graph, Preparata code, perfect code, testing set
Mots-clés : Krawtchouk polynomial.
@article{DA_2023_30_2_a0,
     author = {A. Yu. Vasil'eva},
     title = {A testing set for {Preparata-like} codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2023_30_2_a0/}
}
TY  - JOUR
AU  - A. Yu. Vasil'eva
TI  - A testing set for Preparata-like codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2023
SP  - 5
EP  - 14
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2023_30_2_a0/
LA  - ru
ID  - DA_2023_30_2_a0
ER  - 
%0 Journal Article
%A A. Yu. Vasil'eva
%T A testing set for Preparata-like codes
%J Diskretnyj analiz i issledovanie operacij
%D 2023
%P 5-14
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2023_30_2_a0/
%G ru
%F DA_2023_30_2_a0
A. Yu. Vasil'eva. A testing set for Preparata-like codes. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 2, pp. 5-14. http://geodesic.mathdoc.fr/item/DA_2023_30_2_a0/

[1] A. Yu. Vasil'eva, “On reconstructive sets of vertices in the Boolean cube”, J. Appl. Ind. Math., 6:3 (2012), 393–402 | DOI | MR | MR | Zbl

[2] V. A. Zinoviev and V. K. Leontiev, “On non-existence of perfect codes over Galois fields”, Probl. Upravl. Teor. Inf., 2:2 (1973), 123–132 (Russian) | MR | Zbl

[3] Tietäväinen A., “On the nonexistence of perfect codes over finite fields”, SIAM J. Appl. Math., 24:1 (1973), 88–96 | DOI | MR

[4] Zaitsev G. V., Zinoviev V. A., Semakov N. V., “Interrelation of Preparata and Hamming codes and extension of Hamming codes to new double-error-correcting codes”, Proc. 2nd Int. Symp. Information Theory (Tsahkadsor, Armenia, USSR, Sept. 2–8, 1971), Akadémiai Kiadó, Budapest, 1973, 257–264

[5] N. V. Semakov, V. A. Zinoviev, and G. V. Zaitsev, “Uniformly packed codes”, Probl. Inf. Transm., 7:1 (1971), 30–39 | MR | Zbl

[6] Krasikov I., Litsyn S., “On integral zeros of Krawtchouk polynomials”, J. Comb. Theory. Ser. A, 74:1 (1996), 71–99 | DOI | MR | Zbl

[7] S. V. Avgustinovich, “On a property of perfect binary codes”, Operations Research and Discrete Analysis, Math. Its Appl., 391, Kluwer Acad. Publ., Dordrecht, 1997, 227–232 | MR

[8] D. S. Krotov and A. Yu. Vasil'eva, “On perfect codes that do not contain Preparata-like codes”, Probl. Inf. Transm., 52:3 (2016), 284–288 | DOI | MR | Zbl

[9] Vasil'eva A. Yu., “On the reconstruction of Preparata-like codes”, Proc. 15th Int. Workshop Algebraic and Combinatorial Coding Theory (Albena, Bulgaria, June 18–24, 2016), Inst. Math. Inform., Sofia, 2016, 296–300