On the number of minimum total dominating~sets~in~trees
Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 1, pp. 110-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimum total dominating set (MTDS) of a graph is a vertex subset $D$ of minimum cardinality such that every vertex of the graph is adjacent to at least one vertex of $D.$ In this paper we obtain the sharp upper bound for the number of MTDS in the class of $n$-vertex $2$-caterpillars. We also show that for all $n \geq 1$ every $n$-vertex tree has less than $(\sqrt{2})^n$ MTDS. Illustr. 5, bibliogr. 6.
Keywords: extremal combinatorics, tree, $2$-caterpillar, minimum total dominating set.
@article{DA_2023_30_1_a5,
     author = {D. S. Taletskii},
     title = {On the number of minimum total dominating~sets~in~trees},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {110--129},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2023_30_1_a5/}
}
TY  - JOUR
AU  - D. S. Taletskii
TI  - On the number of minimum total dominating~sets~in~trees
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2023
SP  - 110
EP  - 129
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2023_30_1_a5/
LA  - ru
ID  - DA_2023_30_1_a5
ER  - 
%0 Journal Article
%A D. S. Taletskii
%T On the number of minimum total dominating~sets~in~trees
%J Diskretnyj analiz i issledovanie operacij
%D 2023
%P 110-129
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2023_30_1_a5/
%G ru
%F DA_2023_30_1_a5
D. S. Taletskii. On the number of minimum total dominating~sets~in~trees. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 1, pp. 110-129. http://geodesic.mathdoc.fr/item/DA_2023_30_1_a5/

[1] Bród D., Skupień Z., “Trees with extremal numbers of dominating sets”, Australas. J. Comb., 35 (2006), 273–290 | MR | Zbl

[2] Krzywkowski M., Wagner S., “Graphs with few total dominating sets”, Discrete Math., 341:4 (2018), 997–1009 | DOI | MR | Zbl

[3] Bień A., “Properties of gamma graphs of trees”, Colourings, independence and domination, Abs. 17th Workshop Graph Theory (Piechowice, Poland, Sept. 17–22, 2017, Univ. Zielona Góra, Zielona Góra, 2017, 1 pp. (accessed Jan. 13, 2023) http://www.cid.uz.zgora.pl/php/pdf_file.php?vid=1046

[4] Alvarado J., Dantas S., Mohr E., Rautenbach D., “On the maximum number of minimum dominating sets in forests”, Discrete Math., 342:4 (2018), 934–942 | DOI | MR

[5] Taletskii D. S., “Trees with extremal numbers of $k$-dominating sets”, Discrete Math., 345:1 (2022), 112656, 5 pp. | DOI | MR | Zbl

[6] Rote G., Minimal dominating sets in a tree: Counting, enumeration, and extremal results, Cornell Univ. Libr. e-Print Archive, Cornell Univ., Ithaca, NY, 2019, arXiv: 1903.04517

[7] Henning M. A., Mohr E., Rautenbach D., “On the maximum number of minimum total dominating sets in forests”, Discrete Math. Theor. Comput. Sci., 21:3 (2019), 3, 12 pp. | MR | Zbl