Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2023_30_1_a2, author = {O. I. Krivorotko and S. I. Kabanikhin and M. A. Bektemesov and M. I. Sosnovskaya and A. V. Neverov}, title = {Simulation of {COVID-19} propagation scenarios in~the {Republic} of {Kazakhstan} based~on~regularization of agent model}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {40--66}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2023_30_1_a2/} }
TY - JOUR AU - O. I. Krivorotko AU - S. I. Kabanikhin AU - M. A. Bektemesov AU - M. I. Sosnovskaya AU - A. V. Neverov TI - Simulation of COVID-19 propagation scenarios in~the Republic of Kazakhstan based~on~regularization of agent model JO - Diskretnyj analiz i issledovanie operacij PY - 2023 SP - 40 EP - 66 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2023_30_1_a2/ LA - ru ID - DA_2023_30_1_a2 ER -
%0 Journal Article %A O. I. Krivorotko %A S. I. Kabanikhin %A M. A. Bektemesov %A M. I. Sosnovskaya %A A. V. Neverov %T Simulation of COVID-19 propagation scenarios in~the Republic of Kazakhstan based~on~regularization of agent model %J Diskretnyj analiz i issledovanie operacij %D 2023 %P 40-66 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2023_30_1_a2/ %G ru %F DA_2023_30_1_a2
O. I. Krivorotko; S. I. Kabanikhin; M. A. Bektemesov; M. I. Sosnovskaya; A. V. Neverov. Simulation of COVID-19 propagation scenarios in~the Republic of Kazakhstan based~on~regularization of agent model. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 1, pp. 40-66. http://geodesic.mathdoc.fr/item/DA_2023_30_1_a2/
[1] V. A. Adarchenko, S. A. Baban', A. A. Bragin et al., Modelling the coronavirus epidemic development with the use of differential and statistical models, Prepr. RFYaTs—VNIITF, No 264, Snezhinsk, 2020 (Russian)
[2] O. I. Krivorotko and S. I. Kabanikhin, Mathematical models for the spread of COVID-19, Prepr. Inst. Mat. Sobolev, No 300, Novosibirsk, 2022 (Russian)
[3] Kerr C. C., Stuart R. M., Mistry D. et al., “Covasim: An agent-based model of COVID-19 dynamics and interventions”, PLoS Comput. Biol., 17:7 (2021), e1009149, 32 pp. | DOI
[4] Laubenbacher R., Hinkelmann F., Oremland M., “Agent-based models and optimal control in biology: A discrete approach”, Mathematical concepts and methods in modern biology: Using modern discrete models, Ch. 5, Acad. Press, San Diego, CA, 2013, 143–178
[5] A. I. Vlad, T. E. Sannikova, and A. A. Romanyukha, “Modelling the spread of respiratory viral infections in a city: Multi-agent approach”, Mat. Biol. Bioinform., 15:2 (2020), 338–356 (Russian) | DOI
[6] Aleta A., Martín-Corral D., Pastore y Piontti A. et al., “Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19”, Nat. Hum. Behav., 4:9 (2020), 964–971 | DOI
[7] Lau M. S. Y., Grenfell B., Thomas M., Bryan M., Nelson K., Lopman B., “Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA”, PNAS, 117:36 (2020), 22430–22435 | DOI
[8] Kucharski A. J., Klepac P., Conlan A. J. K. et al., “Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: A mathematical modelling study”, Lancet Infect. Dis., 20:10 (2020), 1151–1160 | DOI
[9] Hoertel N., Blachier M., Blanco C. et al., “A stochastic agent-based model of the SARS-CoV-2 epidemic in France”, Nat. Med., 26:9 (2020), 1417–1421 | DOI
[10] Hellewell J., Abbott S., Gimma A. et al., “Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts”, Lancet Glob. Health, 8:4 (2020), e488–e496 | DOI
[11] Nielsen B. F., Simonsen L., Sneppen K., “COVID-19 superspreading suggests mitigation by social network modulation”, Phys. Rev. Lett., 126:11 (2021), 118301, 6 pp. | DOI
[12] COVID-19 agent-based simulator, Inst. Disease Modeling, Bellevue, WA, 2022 (accessed Jan. 9, 2023) github.com/InstituteforDiseaseModeling/covasim/
[13] Noll N. B., Aksamentov I., Druelle V. et al., COVID-19 scenarios: An interactive tool to explore the spread and associated morbidity and mortality of SARS-CoV-2, Prepr. Server Health Sci. medRxiv, Cold Spring Harbor Lab, Oyster Bay, NY, 2020 (accessed Jan. 9, 2023) medrxiv.org/content/10.1101/2020.05.05.20091363
[14] Tuomisto J. T., Yrjölä J., Kolehmainen M., Bonsdorff J., Pekkanen J., Tikkanen T., An agent-based epidemic model REINA for COVID-19 to identify destructive policies, Prepr. Server Health Sci. medRxiv, Cold Spring Harbor Lab, Oyster Bay, NY, 2020 (accessed Jan. 9, 2023) medrxiv.org/content/10.1101/2020.04.09.20047498
[15] O. I. Krivorotko, S. I. Kabanikhin, N. Yu. Zyatkov, A. Yu. Prikhodko, N. M. Prokhoshin, M. A. Shishlenin, “Mathematical modeling and forecasting of COVID-19 in Moscow and Novosibirsk region”, Num. Anal. Appl., 13:4 (2020), 332–348 | DOI | MR
[16] Krivorotko O. I., Sosnovskaia M. I., Vashchenko I. A., Kerr C. C., Lesnic D., “Agent-based modeling of COVID-19 outbreaks for New York state and UK: Parameter identification algorithm”, Infect. Dis. Model., 7:1 (2022), 30–44 | MR
[17] API reference — pandas 1.5.2 documentation, NumFOCUS, Austin, TX, 2022 (accessed Jan. 9, 2023) pandas.pydata.org/docs/reference/
[18] G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, 1970 | MR | Zbl
[19] Dabral P. P., Murry M. Z., “Modelling and forecasting of rainfall time series using SARIMA”, Environ. Process., 4:2 (2017), 399–419 | DOI | MR
[20] Dickey D. A., Fuller W. A., “Distribution of the estimators for autoregressive time series with a unit root”, J. Am. Stat. Assoc., 74:366a (1979), 427–431 | DOI | MR | Zbl
[21] SciPy API — SciPy v1.10.0 manual, Enthought, Austin, TX, 2022 (accessed Jan. 9, 2023) docs.scipy.org/doc/scipy/reference/
[22] Household: Size composition, United Nations, New York, 2022 (accessed Jan. 9, 2023) population.un.org/Household/#/countries/840
[23] SynthPops — create synthetic populations for COVID-19 epidemic analyses, Inst. Disease Modeling, Bellevue, WA, 2021 (accessed Jan. 9, 2023) github.com/InstituteforDiseaseModeling/synthpops/
[24] Lauer S. A., Grantz K. H., Bi Q. et al., “The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application”, Ann. Intern. Med., 172:9 (2020), 577–582 | DOI
[25] Wölfel R., Corman V. M., Guggemos W. et al., “Virological assessment of hospitalized patients with COVID-2019”, Nature, 581:7809 (2020), 465–469 | DOI
[26] Verity R., Okell L. C., Dorigatti I. et al., “Estimates of the severity of coronavirus disease 2019: A model-based analysis”, Lancet Infect. Dis., 20:6 (2020), 669–677 | DOI | MR
[27] Wang D., Hu B., Hu C. et al., “Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China”, JAMA, 323:11 (2020), 1061–1069 | DOI | MR
[28] O. I. Krivorotko, S. I. Kabanikhin, M. I. Sosnovskaya, and D. V. Andornaya, “Sensitivity and identifiability analysis of COVID-19 pandemic models”, Vavilov. Zh. Genet. Sel., 25:1 (2021), 82–91 (Russian) | MR
[29] Krivorotko O. I., Sosnovskaia M. I., Vashchenko I. A., “Agent-based mathematical model of COVID-19 spread in Novosibirsk region: Identifiability, optimization and forecasting”, J. Inverse Ill-Posed Probl. (to appear) | MR
[30] Optuna — a hyperparameter optimization framework, Preferred Networks, Tokyo, 2018 (accessed Jan. 9, 2023) optuna.org
[31] A. A. Zhiglyavskii and A. G. Zhilinskas, Methods for Global Extremum Search, Nauka, M., 1991 | MR
[32] Bergstra J., Bardenet R., Bengio Y., Kégl B., “Algorithms for hyper-parameter optimization”, Advances in neural information processing systems 24, 25th Annual Conf. (Granada, Spain, Dec. 12–15, 2011), v. 3, Curran Associates, Red Hook, NY, 2012, 2546–2554
[33] Daza-Torres M. L., Capistrán M. A., Capella A., Andrés Christen J., “Bayesian sequential data assimilation for COVID-19 forecasting”, Epidemics, 39 (2022), 100564, 10 pp. | DOI