Pure Nash equilibrium in~a~two-step pricing game: covering sell points in~a~tourist city
Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 1, pp. 5-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The economy of small tourist towns has unique characteristics. Basically, small business in such towns is aimed at meeting tourists' needs. The competition between entrepreneurs engaged in service provision makes the pricing problem relevant. Some entrepreneurs need to define their goods value and decide where to sell them. If an entrepreneur often changes the sell point due to the competition, he may lose the profit. An interesting case is when the sell point choice is based on pure strategies. By the concept of congestion games with player-specific payoff functions and ordinal potential functions, the paper demonstrates the pricing game equilibrium under inherent restrictions. An equilibrium distribution of individual entrepreneurs by sell points in Gelendzhik is found. Tab. 3, illustr. 2, bibliogr. 22.
Keywords: game theory, pure Nash equilibrium, pricing game, potential games.
@article{DA_2023_30_1_a0,
     author = {V. V. Gusev},
     title = {Pure {Nash} equilibrium in~a~two-step pricing game: covering sell points in~a~tourist city},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--27},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2023_30_1_a0/}
}
TY  - JOUR
AU  - V. V. Gusev
TI  - Pure Nash equilibrium in~a~two-step pricing game: covering sell points in~a~tourist city
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2023
SP  - 5
EP  - 27
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2023_30_1_a0/
LA  - ru
ID  - DA_2023_30_1_a0
ER  - 
%0 Journal Article
%A V. V. Gusev
%T Pure Nash equilibrium in~a~two-step pricing game: covering sell points in~a~tourist city
%J Diskretnyj analiz i issledovanie operacij
%D 2023
%P 5-27
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2023_30_1_a0/
%G ru
%F DA_2023_30_1_a0
V. V. Gusev. Pure Nash equilibrium in~a~two-step pricing game: covering sell points in~a~tourist city. Diskretnyj analiz i issledovanie operacij, Tome 30 (2023) no. 1, pp. 5-27. http://geodesic.mathdoc.fr/item/DA_2023_30_1_a0/

[1] Bimpikis K., Ehsani S., İlk{\i}lıç R., “Cournot competition in networked markets”, Manage. Sci., 65:6 (2019), 2467–2481 | DOI

[2] Jabarzare N., Rasti-Barzoki M., “A game theoretic approach for pricing and determining quality level through coordination contracts in a dual-channel supply chain including manufacturer and packaging company”, Int. J. Prod. Econ., 221 (2020), 107480, 18 pp. | DOI

[3] Nocke V., Schutz N., “Multiproduct-firm oligopoly: An aggregative games approach”, Econometrica, 86:2 (2018), 523–557 | DOI | MR | Zbl

[4] Caspi C. E., Pelletier J. E., Harnack L. J., Erickson D. J., Lenk K., Laska M. N., “Pricing of staple foods at supermarkets versus small food stores”, Int. J. Environ. Res. Public Health, 14:8 (2017), 915, 12 pp. | DOI

[5] Minten B., Reardon T., “Food prices, quality, and quality's pricing in supermarkets versus traditional markets in developing countries”, Appl. Econ. Perspect. Policy, 30:3 (2008), 480–490

[6] Reardon T., Echeverria R., Berdegue J., Minten B., Liverpool-Tasie S., Tschirley D., Zilberman D., “Rapid transformation of food systems in developing regions: highlighting the role of agricultural research and innovations”, Agric. Syst., 172 (2019), 47–59 | DOI

[7] Cook J. A., Gale F., “Using food prices and consumption to examine Chinese cost of living”, Pac. Econ. Rev., 24:1 (2019), 3–26 | DOI

[8] Briceno-Arias L., Correa J. R., Perlroth A., “Optimal continuous pricing with strategic consumers”, Manage. Sci., 63:8 (2017), 2741–2755 | DOI

[9] Choi M., Dai A. Y., Kim K., “Consumer search and price competition”, Econometrica, 86:4 (2018), 1257–1281 | DOI | MR | Zbl

[10] Cui W., Li L., “A game-theoretic approach to optimize the Time-of-Use pricing considering customer behaviors”, Int. J. Prod. Econ., 201 (2018), 75–88 | DOI

[11] Martin D., “Strategic pricing with rational inattention to quality”, Games Econ. Behav., 104 (2017), 131–145 | DOI | MR | Zbl

[12] Babaioff M., Dughmi S., Kleinberg R., Slivkins A., “Dynamic pricing with limited supply”, ACM Trans. Econ. Comput., 3:1 (2015), 1–26 | DOI | MR

[13] Chen J., Jian J., Hong S., “Quantum repeated pricing game”, Quantum Inf. Process., 19:2 (2020), 42, 10 pp. | DOI | MR | Zbl

[14] Rath K. P., “Stationary and nonstationary strategies in Hotelling's model of spatial competition with repeated pricing decisions”, Int. J. Game Theory, 27:4 (1998), 525–537 | DOI | MR | Zbl

[15] Monderer D., Shapley L. S., “Potential games”, Games Econ. Behav., 14:1 (1996), 124–143 | DOI | MR | Zbl

[16] Gusev V. V., “Nash-stable coalition partition and potential functions in games with coalition structure”, Eur. J. Oper. Res., 295:3 (2021), 1180–1188 | DOI | MR | Zbl

[17] Rosenthal R. W., “A class of games possessing pure-strategy Nash equilibria”, Int. J. Game Theory, 2:1 (1973), 65–67 | DOI | MR | Zbl

[18] Milchtaich I., “Congestion games with player-specific payoff functions”, Games Econ. Behav., 13:1 (1996), 111–124 | DOI | MR | Zbl

[19] Li L., Lee Y. S., “Pricing and delivery-time performance in a competitive environment”, Manage. Sci., 40:5 (1994), 633–646 | Zbl

[20] Crawford G. S., Pavanini N., Schivardi F., “Asymmetric information and imperfect competition in lending markets”, Am. Econ. Rev., 108:7 (2018), 1659–1701 | DOI

[21] Mitridati L., Kazempour J., Pinson P., “Design and game-theoretic analysis of community-based market mechanisms in heat and electricity systems”, Omega, 99 (2021), 102177, 24 pp. | DOI

[22] Xu X., Chen R., Jiang L., “The influence of payment mechanisms on pricing: When mental imagery stimulates desire for money”, J. Retail., 96:2 (2020), 178–188 | DOI