On some properties of finitely generating transformer sets for $p$-ary fractions
Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 124-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study expressibility of rational probabilities under transformations of random variables with distributions from some initial set by Boolean functions. We investigate finite generation of probabilities expressed by $p$-ary fractions for prime $p$ not less than $5$. We prove some properties that Boolean functions from a finitely generating set should have. Bibliogr. 11.
Mots-clés : Bernoulli random variable, random variable transformation.
Keywords: finite generation
@article{DA_2022_29_4_a6,
     author = {E. E. Trifonova},
     title = {On some properties of finitely generating transformer sets for $p$-ary fractions},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {124--135},
     year = {2022},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2022_29_4_a6/}
}
TY  - JOUR
AU  - E. E. Trifonova
TI  - On some properties of finitely generating transformer sets for $p$-ary fractions
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2022
SP  - 124
EP  - 135
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DA_2022_29_4_a6/
LA  - ru
ID  - DA_2022_29_4_a6
ER  - 
%0 Journal Article
%A E. E. Trifonova
%T On some properties of finitely generating transformer sets for $p$-ary fractions
%J Diskretnyj analiz i issledovanie operacij
%D 2022
%P 124-135
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/DA_2022_29_4_a6/
%G ru
%F DA_2022_29_4_a6
E. E. Trifonova. On some properties of finitely generating transformer sets for $p$-ary fractions. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 124-135. http://geodesic.mathdoc.fr/item/DA_2022_29_4_a6/

[1] A. D. Yashunsky, “Algebras of probability distributions on finite sets”, Proc. Steklov Inst. Math., 301 (2018), 304–318 | DOI | MR

[2] R. L. Skhirtladze, “On synthesis of $p$-schemes using switches with random discrete states”, Soobshchen. Akad. Nauk Gruz. SSR, 26:2 (1961), 181–186 (in Russian)

[3] R. L. Skhirtladze, Modeling of random variables by logic algebra functions, Cand. Sci. Diss., Izd. Tbil. Univ., Tbilisi, 1966 (in Russian)

[4] F. I. Salimov, “The question of simulation of Boolean random variables by means of logic algebra functions”, Probabilistic Methods and Cybernetics, 15, Izd. Kazan. Univ., Kazan, 1979, 68–89 (Russian)

[5] F. I. Salimov, “On a system of generators for algebras over random variables”, Sov. Math., 25:5 (1981), 92–97 | MR

[6] F. I. Salimov, “A family of distribution algebras”, Sov. Math., 32:7 (1988), 106–118 | MR

[7] R. M. Kolpakov, “On generation of some classes of rational numbers by probabilistic $\pi$-nets”, Mosc. Univ. Math. Bull., 46:2 (1991), 27–29 | MR

[8] R. M. Kolpakov, “On the bounds for the complexity of generation of rational numbers by stochastic contact $\pi$-networks”, Mosc. Univ. Math. Bull., 47:6 (1992), 34–36 | MR

[9] R. M. Kolpakov, “On the generation of rational numbers by probabilistic contact nets”, Mosc. Univ. Math. Bull., 47:5 (1992), 41–46 | MR

[10] R. M. Kolpakov, “On the generation of rational numbers by monotone functions”, Theoretical and Applied Aspects of Mathematical Research, Izd. Mosk. Univ., M., 1994, 13–17 (in Russian)

[11] E. E. Trifonova, “On infinite generativeness of quinary fractions in a class of probability transformers”, Izv. Vyssh. Uchebn. Zaved., Povolzh. Reg., Fiz.-Mat. Nauki, 2021, no. 1, 39–48 (in Russian)