Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2022_29_4_a3, author = {E. A. Monakhova and O. G. Monakhov}, title = {Construction of series of families of~degree~six~circulant~networks}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {59--76}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2022_29_4_a3/} }
TY - JOUR AU - E. A. Monakhova AU - O. G. Monakhov TI - Construction of series of families of~degree~six~circulant~networks JO - Diskretnyj analiz i issledovanie operacij PY - 2022 SP - 59 EP - 76 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2022_29_4_a3/ LA - ru ID - DA_2022_29_4_a3 ER -
E. A. Monakhova; O. G. Monakhov. Construction of series of families of~degree~six~circulant~networks. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 4, pp. 59-76. http://geodesic.mathdoc.fr/item/DA_2022_29_4_a3/
[1] E. A. Monakhova, “Series of families of degree six circulant graphs”, Prikl. Diskretn. Mat., 2021, no. 54, 109–124 | MR
[2] Romanov A. Yu., Amerikanov A. A., Lezhnev E. V., “Analysis of approaches for synthesis of networks-on-chip by using circulant topologies”, J. Phys.: Conf. Ser., 1050 (2018), 012071, 12 pp. | DOI
[3] Monakhova E. A., Romanov A. Yu., Lezhnev E. V., “Shortest path search algorithm in optimal two-dimensional circulant networks: Implementation for networks-on-chip”, IEEE Access, 8 (2020), 215010–215019 | DOI | MR
[4] Monakhova E. A., Monakhov O. G., Romanov A. Yu., Lezhnev E. V., “Analytical routing algorithm for networks-on-chip with the three-dimensional circulant topology”, Proc. Moscow Workshop Electron. Netw. Technol. (Moscow, Russia, March 11–13, 2020), Higher School of Economics, M., 2020, 6 pp.
[5] Hwang F. K., “A survey on multi-loop networks”, Theor. Comput. Sci., 299 (2003), 107–121 | DOI | MR
[6] Monakhova E. A., “A survey on undirected circulant graphs”, Discrete Math. Algorithms Appl., 4:1 (2012), 1250002, 30 pp. | DOI | MR
[7] Pérez-Rosés H., Bras-Amorós M., Serradilla-Merinero J. M., “Greedy routing in circulant networks”, Graphs Comb., 38 (2022), 86, 16 pp. | DOI | MR
[8] Martínez C., Vallejo E., Beivide R., Izu C., Moretó M., “Dense Gaussian networks: Suitable topologies for on-chip multiprocessors”, Int. J. Parallel Program., 34 (2006), 193–211 | DOI
[9] Martínez C., Vallejo E., Moretó M., Beivide R., Valero M., “Hierarchical topologies for large-scale two-level networks”, Actas XVI Jornadas Paralelismo (Granada, Spain, Sept. 13–16, 2005), Paraninfo, Madrid, 2005, 133–140
[10] Monakhova E., “Optimal triple loop networks with given transmission delay: Topological design and routing”, Proc. Int. Network Optimization Conf. (Évry/Paris, France, Oct. 27–29, 2003), Inst. Natl. Télécommun., Évry, 2003, 410–415
[11] Dougherty R., Faber V., “The degree-diameter problem for several varieties of Cayley graphs I: The abelian case”, SIAM J. Discrete Math., 17:3 (2004), 478–519 | DOI | MR
[12] Huang X., Ramos A. F., Deng Y., “Optimal circulant graphs as low-latency network topologies”, J. Supercomput., 78 (2022), 13491–13510 | DOI
[13] Lewis R. R., Analysis and construction of extremal circulant and other abelian Cayley graphs, PhD thes., London, 2021, 390 pp.
[14] “Research problems”, J. Comb. Theory, 2:3 (1967), 393 | DOI
[15] Göbel F., Neutel E. A., “Cyclic graphs”, Discrete Appl. Math., 99 (2000), 3–12 | DOI | MR
[16] Du D.-Z., Hsu D. F., Li Q., Xu J., “A combinatorial problem related to distributed loop networks”, Networks, 20:2 (1990), 173–180 | DOI | MR
[17] Chen B.-X., Meng J.-X., Xiao W.-J., “Some new optimal and suboptimal infinite families of undirected double-loop networks”, Discrete Math. Theor. Comput. Sci., 8 (2006), 299–312 | DOI | MR
[18] Tzvieli D., “Minimal diameter double-loop networks. I. Large infinite optimal families”, Networks, 21:4 (1991), 387–415 | DOI | MR
[19] Lewis R. R., “The degree-diameter problem for circulant graphs of degree $8$ and $9$”, Electron. J. Comb., 21:4 (2014), P4.50, 1–19 | MR
[20] Lewis R. R., “The degree-diameter problem for circulant graphs of degrees $10$ and $11$”, Discrete Math., 341:9 (2018), 2553–2566 | DOI | MR
[21] Dalfó C., Fiol M. A., Lopéz N., Ryan J., “An improved Moore bound and some new optimal families of mixed abelian Cayley graphs”, Discrete Math., 343:10 (2020), 112034, 10 pp. | DOI | MR