Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2022_29_3_a5, author = {A. V. Ratushnyi and Yu. A. Kochetov}, title = {A matheuristic for minimization of waiting time for trailers with uncertain arrival times}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {85--101}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2022_29_3_a5/} }
TY - JOUR AU - A. V. Ratushnyi AU - Yu. A. Kochetov TI - A matheuristic for minimization of waiting time for trailers with uncertain arrival times JO - Diskretnyj analiz i issledovanie operacij PY - 2022 SP - 85 EP - 101 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2022_29_3_a5/ LA - ru ID - DA_2022_29_3_a5 ER -
%0 Journal Article %A A. V. Ratushnyi %A Yu. A. Kochetov %T A matheuristic for minimization of waiting time for trailers with uncertain arrival times %J Diskretnyj analiz i issledovanie operacij %D 2022 %P 85-101 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2022_29_3_a5/ %G ru %F DA_2022_29_3_a5
A. V. Ratushnyi; Yu. A. Kochetov. A matheuristic for minimization of waiting time for trailers with uncertain arrival times. Diskretnyj analiz i issledovanie operacij, Tome 29 (2022) no. 3, pp. 85-101. http://geodesic.mathdoc.fr/item/DA_2022_29_3_a5/
[1] Carrizosa E., Nickel S., “Robust facility location”, Math. Methods Oper. Res., 58 (2003), 331–349 | DOI | MR | Zbl
[2] Carrizosa E., Ushakov A., Vasilyev I., “Threshold robustness in discrete facility location problems: A bi-objective approach”, Optim. Lett., 9 (2015), 1297–1314 | DOI | MR | Zbl
[3] P. Borisovsky and O. Battaïa, “MIP-based heuristics for a robust transfer lines balancing problem”, Optimization and Applications, Proc. Int. Conf. OPTIMA 2021 (Petrovac, Montenegro, Sep. 27–Oct. 1, 2021), Lect. Notes Comput. Sci., 13078, Springer, Heidelberg, 2021, 123–135 | DOI | MR
[4] Andersen T., Hove J. H., Fagerholt K., Meisel F., “Scheduling ships with uncertain arrival times through the Kiel Canal”, Maritime Transp. Res., 2 (2021), 100008, 17 pp. | DOI
[5] Ben-Tal A., Nemirovski A., “Robust optimization-methodology and applications”, Math. Program., 92 (2002), 453–480 | DOI | MR | Zbl
[6] García J., Peña A., “Robust optimization: Concepts and applications”, Nature-inspired methods for stochastic, robust and dynamic optimization, IntechOpen, London, 2018, 7–22
[7] Eh. N. Gordeev and V. K. Leont'ev, “A general approach to the study of the stability of solutions in discrete optimization problems”, Comput. Math. Math. Phys., 36:1 (1996), 53–58 | MR | Zbl
[8] Gurevsky E., Battaïa O., Dolgui A., “Stability measure for a generalized assembly line balancing problem”, Discrete Appl. Math., 161:3 (2013), 377–394 | DOI | MR | Zbl
[9] Rossi A., Gurevsky E., Battaïa O., Dolgui A., “Maximizing the robustness for simple assembly lines with fixed cycle time and limited number of workstations”, Discrete Appl. Math., 208 (2016), 123–136 | DOI | MR | Zbl
[10] Gurobi optimizer reference manual, Gurobi Optimization, Beaverton, 2021 (accessed May 16, 2022) www.gurobi.com/documentation/9.5/refman/index.html
[11] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | Zbl
[12] I. N. Kulachenko and P. A. Kononova, “A hybrid local search algorithm for consistent periodic vehicle routing problem”, J. Appl. Ind. Math., 14:2 (2020), 339–351 | DOI | MR
[13] I. N. Kulachenko and P. A. Kononova, “A hybrid algorithm for the drilling rig routing problem”, J. Appl. Ind. Math., 15:2 (2021), 261–276 | DOI | MR | Zbl
[14] Mladenović N., Hansen P., “Variable neighborhood search”, Comput. Oper. Res., 24:11 (1997), 1097–1100 | DOI | MR | Zbl
[15] Smith A. E., Coit D. W., “Penalty functions”, Handbook of evolutionary computation, Oxford Univ. Press, New York, 1997, C5.2:1–C5.2:6