Asymptotic enumeration of labeled series-parallel $k$-cyclic bridgeless graphs
Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 4, pp. 61-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce asymptotic formulas for the number of labeled connected series-parallel $k$-cyclic graphs with given order and fixed number $k$. We prove that almost all labeled series-parallel $k$-cyclic connected graphs without bridges for a fixed number of $k$ are blocks. Bibliogr. 17.
Keywords: enumeration, labeled graph, block, bridgeless graph, series-parallel graph, $k$-cyclic graph, asymptotics, random graph.
@article{DA_2021_28_4_a1,
     author = {V. A. Voblyi},
     title = {Asymptotic enumeration of labeled series-parallel $k$-cyclic bridgeless graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {61--69},
     publisher = {mathdoc},
     volume = {28},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2021_28_4_a1/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - Asymptotic enumeration of labeled series-parallel $k$-cyclic bridgeless graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2021
SP  - 61
EP  - 69
VL  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2021_28_4_a1/
LA  - ru
ID  - DA_2021_28_4_a1
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T Asymptotic enumeration of labeled series-parallel $k$-cyclic bridgeless graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2021
%P 61-69
%V 28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2021_28_4_a1/
%G ru
%F DA_2021_28_4_a1
V. A. Voblyi. Asymptotic enumeration of labeled series-parallel $k$-cyclic bridgeless graphs. Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 4, pp. 61-69. http://geodesic.mathdoc.fr/item/DA_2021_28_4_a1/

[1] Bodirsky M., Gimenez O., Kang M., Noy M., “Enumeration and limit laws of series-parallel graphs”, Eur. J. Comb., 28:8 (2007), 2091–2105 | DOI | Zbl

[2] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969 | Zbl

[3] McDiarmid C., Scott A., “Random graphs from a block stable class”, Eur. J. Comb., 58 (2016), 96–106 | DOI | Zbl

[4] Radhavan S., “Low-connectivity network design on series-parallel graphs”, Networks, 43:3 (2004), 163–176 | DOI

[5] V. A. Voblyi, “The second Riddel relation and its consequences”, J. Appl. Ind. Math., 13:1 (2019), 168–174 | DOI | Zbl

[6] V. A. Voblyi, “On the enumeration of labeled series-parallel $k$-cyclic $2$-connected graphs”, J. Appl. Ind. Math., 15:1 (2021), 169–174 | DOI

[7] Hanlon P., Robinson R. W., “Counting bridgeless graphs”, J. Comb. Theory, Ser. B, 33 (1982), 276–305 | DOI | Zbl

[8] V. A. Voblyi, “Enumeration of labeled connected bicyclic and tricyclic graphs without bridges”, Mat. Zametki, 91:1 (2012), 293–297 (Russian) | Zbl

[9] V. A. Voblyi, “On the asymptotic enumeration of labeled connected $k$-cyclic graphs without bridges”, Mat. Zametki, 107:2 (2020), 304–306 (Russian) | Zbl

[10] V. A. Voblyi, “On the number of labeled outerplanar $k$-cyclic bridgeless Graphs”, J. Appl. Ind. Math., 14:1 (2020), 205–211 | DOI

[11] V. A. Voblyi, “Enumeration of labeled connected graphs with given order and size”, J. Appl. Ind. Math., 10:2 (2016), 302–310 | DOI | Zbl

[12] I. P. Goulden, D. M. Jackson, Combinatorial Enumeration, Wiley, New York, 1983 | Zbl

[13] J. Riordan, Combinatorial Identities, Wiley, New York, 1968 | Zbl

[14] V. A. Voblyi, “On an approach to enumeration of labeled connected graphs: A review”, Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh. Temat. Obz., 188, 2020, 106–118

[15] E. C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London, 1975 | Zbl

[16] Flajolet P., Analytic combinatorics, Camb. Univ. Press, Cambridge, 2009, 826 pp. | Zbl

[17] Wright E. M., “The number of connected sparsely edged graphs. IV”, J. Graph Theory, 7:2 (1983), 219–229 | DOI | Zbl