On nonexistence of distance regular graphs with~the~intersection array $\{53,40,28,16;1,4,10,28\}$
Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 3, pp. 38-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $Q$-polynomial graphs of diameter $4.$ Apart from infinite series intersection arrays $\{m(2m+1),(m-1)(2m+1),m^2,$ $m;1,m,m-1,m(2m+1)\}$ there are the following admissible intersection arrays of $Q$-polynomial graphs of diameter $4$ with at most $4096$ vertices: $\{5,4,4,3;1,1,2,2\}$ (odd graph on $9$ vertices), $\{9,8,7,6;1,2,3,4\}$ (folded $9$-cube), $\{36,21,10,3;1,6,15,28\}$ (half $9$-cube), and $\{53,40,28,$ $16;1,4,10,28\}.$ In the paper it is proved that a distance regular graph with an intersection array $\{53,40,28,16;1,4,10,28\}$ does not exist. Bibliogr. 4.
Mots-clés : $Q$-polynomial graph
Keywords: distance regular graph.
@article{DA_2021_28_3_a1,
     author = {A. A. Makhnev and M. P. Golubyatnikov},
     title = {On nonexistence of distance regular graphs with~the~intersection array $\{53,40,28,16;1,4,10,28\}$},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {38--48},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2021_28_3_a1/}
}
TY  - JOUR
AU  - A. A. Makhnev
AU  - M. P. Golubyatnikov
TI  - On nonexistence of distance regular graphs with~the~intersection array $\{53,40,28,16;1,4,10,28\}$
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2021
SP  - 38
EP  - 48
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2021_28_3_a1/
LA  - ru
ID  - DA_2021_28_3_a1
ER  - 
%0 Journal Article
%A A. A. Makhnev
%A M. P. Golubyatnikov
%T On nonexistence of distance regular graphs with~the~intersection array $\{53,40,28,16;1,4,10,28\}$
%J Diskretnyj analiz i issledovanie operacij
%D 2021
%P 38-48
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2021_28_3_a1/
%G ru
%F DA_2021_28_3_a1
A. A. Makhnev; M. P. Golubyatnikov. On nonexistence of distance regular graphs with~the~intersection array $\{53,40,28,16;1,4,10,28\}$. Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 3, pp. 38-48. http://geodesic.mathdoc.fr/item/DA_2021_28_3_a1/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer, Heidelberg, 1989 | Zbl

[2] Cameron P., Permutation groups, Lond. Math. Soc. Student Texts, 45, Camb. Univ. Press, Cambridge, 1999, 220 pp. | Zbl

[3] Coolsaet K., Jurishich A., “Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs”, J. Comb. Theory, Ser. A, 115 (2008), 1086–1095 | Zbl

[4] Gavrilyuk A. L., Koolen J. H., “A characterization of the graphs of bilinear $d\times d$-forms over $F_2$”, Combinatorica, 39 (2010), 289–321

[5] Gavrilyuk A. L., Koolen J. H., “The Terwilliger polynomial of a $Q$-polynomial distance-regular graph and its application to the pseudo-partition graphs”, Linear Algebra Appl., 466 (2015), 117–140 | Zbl