Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2021_28_3_a1, author = {A. A. Makhnev and M. P. Golubyatnikov}, title = {On nonexistence of distance regular graphs with~the~intersection array $\{53,40,28,16;1,4,10,28\}$}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {38--48}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2021_28_3_a1/} }
TY - JOUR AU - A. A. Makhnev AU - M. P. Golubyatnikov TI - On nonexistence of distance regular graphs with~the~intersection array $\{53,40,28,16;1,4,10,28\}$ JO - Diskretnyj analiz i issledovanie operacij PY - 2021 SP - 38 EP - 48 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2021_28_3_a1/ LA - ru ID - DA_2021_28_3_a1 ER -
%0 Journal Article %A A. A. Makhnev %A M. P. Golubyatnikov %T On nonexistence of distance regular graphs with~the~intersection array $\{53,40,28,16;1,4,10,28\}$ %J Diskretnyj analiz i issledovanie operacij %D 2021 %P 38-48 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2021_28_3_a1/ %G ru %F DA_2021_28_3_a1
A. A. Makhnev; M. P. Golubyatnikov. On nonexistence of distance regular graphs with~the~intersection array $\{53,40,28,16;1,4,10,28\}$. Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 3, pp. 38-48. http://geodesic.mathdoc.fr/item/DA_2021_28_3_a1/
[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer, Heidelberg, 1989 | Zbl
[2] Cameron P., Permutation groups, Lond. Math. Soc. Student Texts, 45, Camb. Univ. Press, Cambridge, 1999, 220 pp. | Zbl
[3] Coolsaet K., Jurishich A., “Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs”, J. Comb. Theory, Ser. A, 115 (2008), 1086–1095 | Zbl
[4] Gavrilyuk A. L., Koolen J. H., “A characterization of the graphs of bilinear $d\times d$-forms over $F_2$”, Combinatorica, 39 (2010), 289–321
[5] Gavrilyuk A. L., Koolen J. H., “The Terwilliger polynomial of a $Q$-polynomial distance-regular graph and its application to the pseudo-partition graphs”, Linear Algebra Appl., 466 (2015), 117–140 | Zbl