Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2021_28_1_a3, author = {I. P. Chukhrov}, title = {Connected {Boolean} functions with a locally extremal number of prime implicants}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {68--96}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2021_28_1_a3/} }
TY - JOUR AU - I. P. Chukhrov TI - Connected Boolean functions with a locally extremal number of prime implicants JO - Diskretnyj analiz i issledovanie operacij PY - 2021 SP - 68 EP - 96 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2021_28_1_a3/ LA - ru ID - DA_2021_28_1_a3 ER -
I. P. Chukhrov. Connected Boolean functions with a locally extremal number of prime implicants. Diskretnyj analiz i issledovanie operacij, Tome 28 (2021) no. 1, pp. 68-96. http://geodesic.mathdoc.fr/item/DA_2021_28_1_a3/
[1] Yu. L. Vasil'ev, V. V. Glagolev, “Metric properties of disjunctive normal forms”, Discrete Mathematics and Mathematical Problems of Cybernetics, v. 1, Nauka, M., 1974, 99–148 (Russian)
[2] A. A. Sapozhenko, I. P. Chukhrov, “Boolean function minimization in the class of disjunctive normal forms”, J. Sov. Math., 46:4 (1989), 2021–2052 | DOI | MR | Zbl | Zbl
[3] M. M. Gadzhiev, “Maximum length of abbreviated DNF for Boolean functions of five and six variables”, Discrete Analysis, 18, Izd. Inst. Mat., Novosibirsk, 1971, 3–24 (Russian)
[4] A. P. Vikulin, “Estimation of the number of conjunctions in the abbreviated DNF”, Cybernetics Problems, 29, Nauka, M., 1971, 151–166 (Russian) | MR | Zbl
[5] Chandra A. K., Markovsky G., “On the number of prime implicants”, Discrete Math., 24 (1978), 7–11 | DOI | MR | Zbl
[6] A. E. Andreev, “On the problem of minimizing disjunctive normal forms”, Dokl. Akad. Nauk SSSR, 274:2 (1984), 265–269 (Russian) | MR | Zbl
[7] Kettle N., King A., Strzemecki T., “Widening ROBDDs with prime implicants”, Tools and Algorithms for the Construction and Analysis of Systems, Proc. 12th Int. Conf. (Vienna, Austria, Mar. 25–Apr. 2, 2006), Lect. Notes Comput. Sci., 3920, Springer, Heidelberg, 2006, 105–119 | DOI | Zbl
[8] Sloan R. H., Szörenyi B., Turan G., “On $k$-term DNF with the largest number of prime implicants”, SIAM J. Discrete Math., 21:4 (2008), 987–998 | DOI | MR
[9] Talebanfard N., “On the structure and the number of prime implicants of 2-CNFs”, Discrete Appl. Math., 200 (2016), 1–4 | DOI | MR | Zbl
[10] G. P. Gavrilov, A. A. Sapozhenko, Tasks and Exercises in Discrete Mathematics, Fizmatlit, M., 2005 (Russian)