@article{DA_2020_27_4_a0,
author = {V. V. Voroshilov},
title = {A~maximum dicut in~a~digraph induced by~a~minimal~dominating~set},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {5--20},
year = {2020},
volume = {27},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2020_27_4_a0/}
}
V. V. Voroshilov. A maximum dicut in a digraph induced by a minimal dominating set. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 4, pp. 5-20. http://geodesic.mathdoc.fr/item/DA_2020_27_4_a0/
[1] N. Christofides, Graph Theory: An Algorithmic Approach, Academic Press, London, 1975 | MR
[2] R. M. Karp, “Reducibility among combinatorial problems”, Complexity of Computer Computations, Proc. Symp. CCC (Yorktown Heights, USA, March 20–22, 1972), Plenum Press, New York, 1972, 85–103 | DOI | MR
[3] A. Ageev, R. Hassin, M. Sviridenko, “A 0.5-approximation algorithm for max dicut with given sizes of parts”, SIAM J. Discrete Math., 14:2 (2001), 246–255 | DOI | MR | Zbl
[4] J. Lee, N. Viswanath, X. Shen, “Max-cut under graph constraints”, Programming and Combinatorial Optimization, Proc. 18th Int. Conf. (Liège, Belgium, June 1-3, 2016), Lect. Notes Comput. Sci., 9682, Springer, Cham, 2016, 50–62 | DOI | MR | Zbl
[5] G. A. Cheston, G. Fricke, S. T. Hedetniemi, D. P. Jacobs, “On the computational complexity of upper fractional domination”, Discrete Appl. Math., 27:3 (1990), 195–207 | DOI | MR | Zbl
[6] N. Boria, F. Della Croce, V. Th. Paschosdef, “On the max min vertex cover problem”, Discrete Appl. Math., 196 (2015), 62–71 | DOI | MR | Zbl
[7] R. Yu. Simanchev, I. V. Urazova, V. V. Voroshilov, V. V. Karpov, A. A. Korableva, “Selection of the key-indicator system for the economic security of a region using a (0, 1)-programming model”, Vestn. Omsk. Univ., Ser. Ekonomika, 17:3 (2019), 170–179 (Russian) | MR
[8] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | Zbl