On the number of labeled outerplanar $k$-cyclic~bridgeless graphs
Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 1, pp. 5-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an explicit formula for the number of labeled connected outerplanar $k$-cyclic $n$-vertex bridgeless graphs. We find asymptotics for the number of those graphs for a large number of vertices and fixed $k$. As a consequence, we prove that, for $k$ fixed, almost all labeled connected outerplanar $k$-cyclic graphs have bridges. Tab. 1, bibliogr. 14.
Keywords: enumeration, labeled graph, outerplanar graph, bridgeless graph, $k$-cyclic graph, asymptotics.
@article{DA_2020_27_1_a0,
     author = {V. A. Voblyi},
     title = {On the number of labeled outerplanar $k$-cyclic~bridgeless graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2020_27_1_a0/}
}
TY  - JOUR
AU  - V. A. Voblyi
TI  - On the number of labeled outerplanar $k$-cyclic~bridgeless graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2020
SP  - 5
EP  - 16
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2020_27_1_a0/
LA  - ru
ID  - DA_2020_27_1_a0
ER  - 
%0 Journal Article
%A V. A. Voblyi
%T On the number of labeled outerplanar $k$-cyclic~bridgeless graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2020
%P 5-16
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2020_27_1_a0/
%G ru
%F DA_2020_27_1_a0
V. A. Voblyi. On the number of labeled outerplanar $k$-cyclic~bridgeless graphs. Diskretnyj analiz i issledovanie operacij, Tome 27 (2020) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/DA_2020_27_1_a0/

[1] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969 | MR | Zbl

[2] M. Bodirsky, M. Kang, “Generating outerplanar graphs uniformly at random”, Comb., Probab., Comput., 15:3 (2006), 333–343 | DOI | MR | Zbl

[3] M. Bodirsky, O. Gimenez, M. Kang, M. Noy, “Enumeration and limit laws of series-parallel graphs”, Eur. J. Comb., 28:8 (2007), 2091–2105 | DOI | MR | Zbl

[4] M. Drmota, E. Fusy, M. Kang, V. Kraus, J. Rue, “Asymptotic study of subcritical graph classes”, SIAM J. Discrete Math., 25:4 (2011), 1615–1651 | DOI | MR | Zbl

[5] V. A. Voblyi, “Number of labeled outerplanar k-cyclic graphs”, Mat. Zametki, 103 (2018), 657–666 | DOI | MR | Zbl

[6] V. A. Voblyi, “A simple formula for the number of labeled outerplanar k-cyclic blocks and their asymptotic counting”, Proc. XII Int. Workshop “Discrete Mathematics and Its Applications” (Moscow, Russia, June 20–25, 2016), Izd. Mekh.-Mat. Fak. Mosk. Gos. Univ., M., 2016, 285–287

[7] P. Hanlon, R. W. Robinson, “Counting bridgeless graphs”, J. Comb. Theory, Ser. B, 33:3 (1982), 276–305 | DOI | MR | Zbl

[8] V. A. Voblyi, “Enumeration of labeled connected graphs with given order and size”, J. Appl. Ind. Math., 10:2 (2016), 302–310 | DOI | MR | Zbl

[9] I. P. Goulden, D. M. Jackson, Combinatorial Enumeration, J. Wiley Sons, New York, 1983 | MR | MR | Zbl

[10] V. A. Voblyi, “The second Riddell relation and its consequences”, J. Appl. Ind. Math., 13:1 (2019), 168–174 | DOI | MR | Zbl

[11] C. McDiarmid, A. Scott, “Random graphs from a block stable class”, Eur. J. Comb., 58 (2016), 96–106 | DOI | MR | Zbl

[12] M. Noy, “Random planar graphs and beyond”, Proc. Int. Congr. of Mathematicians (Seoul, Korea, Aug. 13–21, 2014), v. IV, ICM 2014 Organ. Comm., Seoul, 2014, 407–431 | MR

[13] F. Harary, E. M. Palmer, Graphical Enumeration, Acad. Press, New York, 1973 | MR | Zbl

[14] V. A. Voblyi, “Enumeration of labeled Euler cactuses”, Proc. XI Int. Workshop “Discrete Mathematics and Its Applications” (Moscow, Russia, Jan. 18–23, 2012), Izd. Mekh.-Mat. Fak. Mosk. Gos. Univ., M., 2012, 275–277