On the perfectness of minimal regular partitions of the edge set of the $n$-dimensional cube
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 74-107

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that, for $n$ equal to $3$, $5$, and a power of $2$, every minimal partition of the edge set of the $n$-dimensional cube is perfect. As a consequence, we obtain some description of the classes of all minimal parallel-serial contact schemes ($\pi$-schemes) realizing the linear Boolean functions that depend essentially on $n$ variables for the corresponding values of $n$. Bibliogr. 16.
Keywords: Boolean function, $\pi$-scheme, regular partition of the edge set of the $n$-dimensional cube, lower complexity bound.
@article{DA_2019_26_4_a4,
     author = {K. L. Rychkov},
     title = {On the perfectness of minimal regular partitions of the edge set of the $n$-dimensional cube},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {74--107},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2019_26_4_a4/}
}
TY  - JOUR
AU  - K. L. Rychkov
TI  - On the perfectness of minimal regular partitions of the edge set of the $n$-dimensional cube
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2019
SP  - 74
EP  - 107
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2019_26_4_a4/
LA  - ru
ID  - DA_2019_26_4_a4
ER  - 
%0 Journal Article
%A K. L. Rychkov
%T On the perfectness of minimal regular partitions of the edge set of the $n$-dimensional cube
%J Diskretnyj analiz i issledovanie operacij
%D 2019
%P 74-107
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2019_26_4_a4/
%G ru
%F DA_2019_26_4_a4
K. L. Rychkov. On the perfectness of minimal regular partitions of the edge set of the $n$-dimensional cube. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 74-107. http://geodesic.mathdoc.fr/item/DA_2019_26_4_a4/