On the perfectness of minimal regular partitions of the edge set of the $n$-dimensional cube
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 74-107
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that, for $n$ equal to $3$, $5$, and a power of $2$,
every minimal partition of the edge set of the $n$-dimensional cube is perfect.
As a consequence, we obtain some description of the classes of all minimal parallel-serial contact schemes
($\pi$-schemes) realizing the linear Boolean functions that depend essentially on $n$ variables
for the corresponding values of $n$. Bibliogr. 16.
Keywords:
Boolean function, $\pi$-scheme, regular partition of the edge set of the $n$-dimensional cube, lower complexity bound.
@article{DA_2019_26_4_a4,
author = {K. L. Rychkov},
title = {On the perfectness of minimal regular partitions of the edge set of the $n$-dimensional cube},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {74--107},
publisher = {mathdoc},
volume = {26},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2019_26_4_a4/}
}
TY - JOUR AU - K. L. Rychkov TI - On the perfectness of minimal regular partitions of the edge set of the $n$-dimensional cube JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 74 EP - 107 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2019_26_4_a4/ LA - ru ID - DA_2019_26_4_a4 ER -
K. L. Rychkov. On the perfectness of minimal regular partitions of the edge set of the $n$-dimensional cube. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 74-107. http://geodesic.mathdoc.fr/item/DA_2019_26_4_a4/