Undominatedness of equilibria in~a~mixed~economy~of~Arrow--Debreu type
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 34-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model of economy with two markets for each product: one–state and the other–competitive. Moreover, both markets coexist in the same economic space allowing free movement of goods and means of payment. In particular, it is assumed that the surplus of products purchased at fixed state prices can be sold at free prices of the competitive market. The important feature of the model is that the manufacturing activity is taken into account both in the state and in the competitive market. While most literature on mixed economies is devoted to the issues of existence and Pareto optimality of equilibria, the focus of the present paper is on analyzing their coalition stability. We continue studying the fuzzy cores of mixed economic models of Arrow–Debreu type which was started earlier for the case of high free market prices. New conditions are established for the coincidence of the sets of undominated and equilibrium allocations, covering the cases of low equilibrium prices for some of the products. Bibliogr. 15.
Keywords: mixed economy with production, rationing, state order, equilibrium, undominated allocation, fuzzy core.
@article{DA_2019_26_4_a2,
     author = {V. A. Vasil'ev},
     title = {Undominatedness of equilibria {in~a~mixed~economy~of~Arrow--Debreu} type},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {34--55},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2019_26_4_a2/}
}
TY  - JOUR
AU  - V. A. Vasil'ev
TI  - Undominatedness of equilibria in~a~mixed~economy~of~Arrow--Debreu type
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2019
SP  - 34
EP  - 55
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2019_26_4_a2/
LA  - ru
ID  - DA_2019_26_4_a2
ER  - 
%0 Journal Article
%A V. A. Vasil'ev
%T Undominatedness of equilibria in~a~mixed~economy~of~Arrow--Debreu type
%J Diskretnyj analiz i issledovanie operacij
%D 2019
%P 34-55
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2019_26_4_a2/
%G ru
%F DA_2019_26_4_a2
V. A. Vasil'ev. Undominatedness of equilibria in~a~mixed~economy~of~Arrow--Debreu type. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 34-55. http://geodesic.mathdoc.fr/item/DA_2019_26_4_a2/

[1] V. A. Vasil'ev, “Fuzzy core allocations in a mixed economy of Arrow-Debreu type”, Optimization Problems and Their Applications, Rev. Sel. Pap. 7th Int. Conf. OPTA-2018 (Omsk, Russia, July 8–14, 2018), Commun. Comput. Inf. Sci., 871, Springer, Cham, 2018, 235–248

[2] V. L. Makarov, V. A. Vasil'ev, A. N. Kozyrev, V. M. Marakulin, “On some problems and results of modern mathematical economics”, Optimization, 30, Inst. Mat. SO AN SSSR, Novosibirsk, 1982, 5–86 (Russian)

[3] V. L. Makarov, V. A. Vasil'ev, A. N. Kozyrev, V. M. Marakulin, “Equilibria, rationing, stability”, Matekon, 25:4 (1989), 4–95

[4] V. A. Vasil'ev, A. V. Sidorov, “Equilibrium in a regulated market: I”, Existence, Diskretn. Anal. Issled. Oper., Ser. 2, 8:1 (2001), 3–21 (Russian) | MR | Zbl

[5] V. A. Vasil'ev, H. Wiesmeth, “Equilibrium in a mixed economy of Arrow-Debreu type”, J. Math. Econ., 44:2 (2008), 132–147 | DOI | MR | Zbl

[6] G. Van der Laan, V. A. Vasil'ev, R. J. G. Venniker, “On the transition from the mixed economy to the market economics”, Sib. Adv. Math., 10:1 (2000), 1–33 | MR | Zbl

[7] C. D. Aliprantis, D. J. Brown, O. Burkinshaw, Existence and Optimality of Competitive Equilibria, Springer, Berlin, 1990 | MR

[8] W. Hildenbrand, Core and Equilibria of a Large Economy, Princeton Univ. Press, Princeton, 1974 | MR | Zbl

[9] V. A. Vasil'ev, “On Edgeworth equilibria for some types of nonclassic markets”, Sib. Adv. Math., 6:3 (1996), 96–150 | MR

[10] V. A. Vasil'ev, “On the coincidence of cores and consistent distributions in mixed economic systems”, Dokl. Math., 55:1 (1997), 75–79 | Zbl

[11] V. A. Vasil'ev, “Core equivalence in a mixed economy”, Theory and Markets, North-Holland Publ., Amsterdam–Oxford–New York–Tokyo, 1999, 59–82 | Zbl

[12] H. Nikaido, Convex Structures and Economic Theory, Academic Press, New York, 1968 | MR | Zbl

[13] I. Ekeland, Éléments d'économie mathématique, Hermann, Paris, 1979 (French) | MR

[14] J. P. Aubin, Mathematical methods of game and economic theory, North-Holland Publ, Amsterdam–New York–Oxford, 1979, 619 pp. | MR | Zbl

[15] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, 1970 | MR | Zbl