Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2019_26_4_a1, author = {V. L. Beresnev and A. A. Melnikov}, title = {A bilevel {``Attacker--Defender''} model to~choosing~the~composition of attack means}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {16--33}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2019_26_4_a1/} }
TY - JOUR AU - V. L. Beresnev AU - A. A. Melnikov TI - A bilevel ``Attacker--Defender'' model to~choosing~the~composition of attack means JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 16 EP - 33 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2019_26_4_a1/ LA - ru ID - DA_2019_26_4_a1 ER -
%0 Journal Article %A V. L. Beresnev %A A. A. Melnikov %T A bilevel ``Attacker--Defender'' model to~choosing~the~composition of attack means %J Diskretnyj analiz i issledovanie operacij %D 2019 %P 16-33 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2019_26_4_a1/ %G ru %F DA_2019_26_4_a1
V. L. Beresnev; A. A. Melnikov. A bilevel ``Attacker--Defender'' model to~choosing~the~composition of attack means. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 4, pp. 16-33. http://geodesic.mathdoc.fr/item/DA_2019_26_4_a1/
[1] T. Ding, L. Yao, F. Li, “A multi-uncertainty-set based two-stage robust optimization to Defender-Attacker-Defender model for power system protection”, Reliab. Eng. Syst. Saf., 169 (2018), 179–186 | DOI | MR
[2] N. Alguacil, A. Delgadillo, J. M. Arroyo, “A trilevel programming approach for electric grid defense planning”, Comput. Oper. Res., 41:1 (2014), 282–290 | DOI | MR | Zbl
[3] V. L. Beresnev, “Mathematical models for planning development of technical means systems”, Diskretn. Anal. Issled. Oper., Ser. 2, 4:1 (1997), 4–29 (Russian) | Zbl
[4] M. P. Scaparra, R. L. Church, “A bilevel mixed-integer program for critical infrastructure protection planning”, Comput. Oper. Res., 35 (2008), 1905–1923 | DOI | Zbl
[5] F. Liberatore, M. P. Scaparra, M. S. Daskin, “Analysis of facility protection strategies against an uncertain number of attacks: The stochastic r-interdiction median problem with fortification”, Comput. Oper. Res., 38 (2011), 357–366 | DOI | MR | Zbl
[6] S. Sadeghi, A. Seifi, E. Azizi, “Trilevel shortest path network interdiction with partial fortification”, Comput. Ind. Eng., 106 (2017), 400–411 | DOI
[7] H. Stackelberg, The theory of the market economy, Oxford Univ. Press, Oxford, 1952, 289 pp.
[8] S. Dempe, Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002, 332 pp. | MR | Zbl
[9] M. Fischetti, I. Ljubic, M. Sinnl, “Benders decomposition without separability: A computational study for capacitated facility location problems”, Eur. J. Oper. Res., 253:3 (2016), 557–569 | DOI | MR | Zbl
[10] S. Martello, P. Toth, Knapsack problems: algorithms and computer implementations, John Wiley Sons, Inc., New York, 1990, 306 pp. | MR | Zbl
[11] H. Kellerer, U. Pferschy, D. Pisinger, Knapsack problems, Springer, Heidelberg, 2004, 546 pp. | MR | Zbl
[12] Y. A. Kochetov, A. V. Plyasunov, “Polynomially solvable class of linear bilevel programming problems”, Diskretn. Anal. Issled. Oper., Ser. 2, 4:2 (1997), 23–33 (Russian) | MR
[13] A. V. Plyasunov, “Linear bilevel programming problem with multivariant knapsack problem on the lower level”, Diskretn. Anal. Issled. Oper., Ser. 2, 10:1 (2003), 44–52 (Russian) | MR | Zbl
[14] J. T. Moore, J. F. Bard, “The mixed integer linear bilevel programming problem”, Oper. Res., 38:5 (1990), 911–921 | DOI | MR | Zbl