Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2019_26_2_a5, author = {M. I. Rozhkov and S. S. Malakhov}, title = {Experimental methods for constructing {MDS~matrices} of a special form}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {115--128}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2019_26_2_a5/} }
TY - JOUR AU - M. I. Rozhkov AU - S. S. Malakhov TI - Experimental methods for constructing MDS~matrices of a special form JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 115 EP - 128 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2019_26_2_a5/ LA - ru ID - DA_2019_26_2_a5 ER -
M. I. Rozhkov; S. S. Malakhov. Experimental methods for constructing MDS~matrices of a special form. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 2, pp. 115-128. http://geodesic.mathdoc.fr/item/DA_2019_26_2_a5/
[1] A. V. Anashkin, “Complete description of a class of MDS-matrices over finite field of characteristic $2$”, Mat. Vopr. Kriptogr., 8:4 (2017), 5–28 (in Russian) | DOI | MR
[2] R. Lidl, H. Niederreiter, Finite Fields, Camb. Univ. Press, Cambridge, 1985 | MR | MR
[3] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Math. Libr., 16, North-Holland, Amsterdam, 1977 | MR | Zbl
[4] F. M. Malyshev, “The duality of differential and linear methods in cryptography”, Mat. Vopr. Kriptogr., 5:3 (2014), 35–47 (in Russian) | DOI
[5] F. M. Malyshev, D. I. Trifonov, “Diffusion properties of XSLP-ciphers”, Mat. Vopr. Kriptogr., 7:3 (2016), 47–60 (in Russian) | DOI | MR
[6] M. Hall, Jr., Combinatorial Theory, Blaisdell, Waltham, MA, 1967 | MR | MR | Zbl
[7] Augot D., Finiasz M., “Exhaustive search for small dimension recursive MDS diffusion layers for block ciphers and hash functions”, Proc. IEEE Int. Symp. Information Theory (Istanbul, Turkey, July 7–12, 2013), IEEE, Piscataway, 2013, 1551–1555
[8] Belov A. V., Los A. B., Rozhkov M. I., “Some approaches to construct MDS matrices over a finite field”, Commun. Appl. Math. Comput., 31:2 (2017), 143–152 | MR | Zbl
[9] Belov A. V., Los A. B., Rozhkov M. I., “Some classes of the MDS matrices over a finite field”, Lobachevskii J. Math., 38:5 (2017), 880–883 | DOI | MR | Zbl
[10] Couselo E., González S., Markov V., Nechaev A., “Recursive MDS-codes and recursive differentiable quasigroups”, Discrete Math. Appl., 8:3 (1998), 217–245 | DOI | MR | Zbl
[11] Couselo E., González S., Markov V., Nechaev A., “Parameters of recursive MDS-codes”, Discrete Math. Appl., 10:5 (2000), 433–453 | DOI | MR | Zbl
[12] Gupta K. C., Ray I. G., “On constructions of MDS matrices from companion matrices for lightweight cryptography”, Security Engineering and Intelligence Informatics, Proc. CD-ARES Workshops (Regensburg, Germany, Sept. 2–6, 2013), Lect. Notes Comp. Sci., 8128, Springer, Heidelberg, 2013, 29–43 | DOI
[13] Gupta K. C., Ray I. G., “On constructions of circulant MDS matrices for lightweight cryptography”, Information Security Practice and Experience, Proc. 10th Int. Conf. (Fuzhou, China, May 5–8, 2014), Lect. Notes Comput. Sci., 8434, Springer, Cham, 2014, 564–576 | DOI
[14] Junod P., Vaudenay S., “Perfect diffusion primitives for block ciphers: building efficient MDS matrices”, Rev. Sel. Pap. 11th Int. Conf. Sel. Areas Cryptogr. (Waterloo, Canada, Aug. 9–10, 2004), Lect. Notes Comput. Sci., 3357, Springer, Heidelberg, 2005, 84–99 | DOI | MR | Zbl
[15] Matsui M., “On correlation between the order of S-boxes and the strength of DES”, Advances in Cryptology – EUROCRYPT'94: Proc. Workshop Theory Appl. Cryptogr. Tech. (Perugia, Italy, May 9–12, 1994), Lect. Notes Comput. Sci., 950, Springer, Heidelberg, 1995, 366–375 | DOI | MR | Zbl