Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2019_26_1_a4, author = {D. S. Malyshev and D. B. Mokeev}, title = {K\"onig graphs with respect to the 4-path and~its~spanning supergraphs}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {74--88}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2019_26_1_a4/} }
TY - JOUR AU - D. S. Malyshev AU - D. B. Mokeev TI - K\"onig graphs with respect to the 4-path and~its~spanning supergraphs JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 74 EP - 88 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2019_26_1_a4/ LA - ru ID - DA_2019_26_1_a4 ER -
D. S. Malyshev; D. B. Mokeev. K\"onig graphs with respect to the 4-path and~its~spanning supergraphs. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 1, pp. 74-88. http://geodesic.mathdoc.fr/item/DA_2019_26_1_a4/
[1] V. E. Alekseev, D. B. Mokeev, “König graphs with respect to 3-paths”, Diskretn. Anal. Issled. Oper., 19:4 (2012), 3–14 (Russian)
[2] D. S. Malyshev, “The impact of the growth rate of the packing number of graphs on the computational complexity of the independent set problem”, Discrete Math. Appl., 23:3–4 (2013), 245–249 | DOI | MR | Zbl
[3] D. B. Mokeev,, “On König graphs with respect to $P_4$”, J. Appl. Ind. Math., 11:3 (2017), 421–430 | DOI | MR | Zbl
[4] Alekseev V. E., Mokeev D. B., “König graphs for 3-paths and 3-cycles”, Discrete Appl. Math., 204 (2016), 1–5 | DOI | MR | Zbl
[5] Brešar B., Kardoš F., Katrenič J., Semanišin G., “Minimum $k$-path vertex cover”, Discrete Appl. Math., 159:12 (2011), 1189–1195 | DOI | MR | Zbl
[6] Deming R. W., “Independence numbers of graphs — an extension of the König-Egervary theorem”, Discrete Math., 27 (1979), 23–33 | DOI | MR | Zbl
[7] Devi N. S., Mane A. C., Mishra S., “Computational complexity of minimum $P_4$ vertex cover problem for regular and $K_{1,4}$-free graphs”, Discrete Appl. Math., 184 (2015), 114–121 | DOI | MR | Zbl
[8] Diestel R., Graph theory, Grad. Texts Math., 173, Springer, Heidelberg, 2005, 322 pp. | MR | Zbl
[9] Ding G., Xu Z., Zang W., “Packing cycles in graphs, II”, J. Comb. Theory, Ser. B, 87:2 (2003), 244–253 | DOI | MR | Zbl
[10] Edmonds J., “Paths, trees, and flowers”, Can. J. Math., 17:3–4 (1965), 449–467 | DOI | MR | Zbl
[11] Hell P., “Graph packings”, Electron. Notes Discrete Math., 5 (2000), 170–173 | DOI | MR
[12] Kardoš F., Katrenič J., Schiermeyer I., “On computing the minimum 3-path vertex cover and dissociation number of graphs”, Theor. Comput. Sci., 412:50 (2011), 7009–7017 | DOI | MR | Zbl
[13] Kirkpatrick D. G., Hell P., “On the completeness of a generalized matching problem”, Proc. 10th Annu. ACM Symp. Theory Comput. (San Diego, CA, May 1–3, 1978), ACM, New York, 1978, 240–245 | MR | Zbl
[14] Kosowski A., Małafiejski M., Żyliński P., “Combinatorial and computational aspects of graph packing and graph decomposition”, Graphs Comb., 24:5 (2008), 461–468 | DOI | MR | Zbl
[15] Li Y., Tu J., “A 2-approximation algorithm for the vertex cover $P_4$ problem in cubic graphs”, Int. J. Comput. Math., 91:10 (2014), 2103–2108 | DOI | MR | Zbl
[16] Masuyama S., Ibaraki T., “Chain packing in graphs”, Algorithmica, 6:1 (1991), 826–839 | DOI | MR | Zbl
[17] Sterboul F., “A Characterization of graphs in which the transversal number equals the matching number”, J. Comb. Theory, Ser. B, 27 (1979), 228–229 | DOI | MR | Zbl
[18] Tu J., Zhou W., “A primal-dual approximation algorithm for the vertex cover $P_3$ problem”, Theor. Comput. Sci., 412:50 (2011), 7044–7048 | DOI | MR | Zbl
[19] Yuster R., “Combinatorial and computational aspects of graph packing and graph decomposition”, Comput. Sci. Rev., 1:1 (2007), 12–26 | DOI | MR | Zbl