Stability aspects of multicriteria integer~linear~programming problems
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 1, pp. 5-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration are the multicriteria integer linear programming problems with finitely many feasible solutions. The problem itself consists in finding a set of extremal solutions. We derive some lower and upper bounds for the $T_1$-stability radius under assumption that arbitrary Hölder norms are given in the solution and criteria spaces. A class of the problems with an infinitely large stability radius is specified. We also consider the case of the multicriteria linear Boolean problem. Bibliogr. 22.
Keywords: multicriteria ILP problem, set of extremal solutions, stability radius, $T_1$-stability, the Hölder norm.
@article{DA_2019_26_1_a0,
     author = {S. E. Bukhtoyarov and V. A. Emelichev},
     title = {Stability aspects of multicriteria integer~linear~programming problems},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--19},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2019_26_1_a0/}
}
TY  - JOUR
AU  - S. E. Bukhtoyarov
AU  - V. A. Emelichev
TI  - Stability aspects of multicriteria integer~linear~programming problems
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2019
SP  - 5
EP  - 19
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2019_26_1_a0/
LA  - ru
ID  - DA_2019_26_1_a0
ER  - 
%0 Journal Article
%A S. E. Bukhtoyarov
%A V. A. Emelichev
%T Stability aspects of multicriteria integer~linear~programming problems
%J Diskretnyj analiz i issledovanie operacij
%D 2019
%P 5-19
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2019_26_1_a0/
%G ru
%F DA_2019_26_1_a0
S. E. Bukhtoyarov; V. A. Emelichev. Stability aspects of multicriteria integer~linear~programming problems. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/DA_2019_26_1_a0/