Stability aspects of multicriteria integer~linear~programming problems
Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 1, pp. 5-19
Voir la notice de l'article provenant de la source Math-Net.Ru
Under consideration are the multicriteria integer linear programming problems with finitely many feasible solutions. The problem itself consists in finding a set of extremal solutions. We derive some lower and upper bounds for the $T_1$-stability radius under assumption that arbitrary Hölder norms are given in the solution and criteria spaces. A class of the problems with an infinitely large stability radius is specified. We also consider the case of the multicriteria linear Boolean problem. Bibliogr. 22.
Keywords:
multicriteria ILP problem, set of extremal solutions, stability radius, $T_1$-stability, the Hölder norm.
@article{DA_2019_26_1_a0,
author = {S. E. Bukhtoyarov and V. A. Emelichev},
title = {Stability aspects of multicriteria integer~linear~programming problems},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {5--19},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2019_26_1_a0/}
}
TY - JOUR AU - S. E. Bukhtoyarov AU - V. A. Emelichev TI - Stability aspects of multicriteria integer~linear~programming problems JO - Diskretnyj analiz i issledovanie operacij PY - 2019 SP - 5 EP - 19 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2019_26_1_a0/ LA - ru ID - DA_2019_26_1_a0 ER -
S. E. Bukhtoyarov; V. A. Emelichev. Stability aspects of multicriteria integer~linear~programming problems. Diskretnyj analiz i issledovanie operacij, Tome 26 (2019) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/DA_2019_26_1_a0/