Approximability of the problem of finding a~vector subset with the longest sum
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 131-148

Voir la notice de l'article provenant de la source Math-Net.Ru

We answer the question of existence of polynomial-time constant-factor approximation algorithms for the space of nonfixed dimension. We prove that, in Euclidean space the problem is solvable in polynomial time with accuracy $\sqrt\alpha$, where $\alpha=2/\pi$, and if $\mathrm P\neq\mathrm{NP}$ then there are no polynomial algorithms with better accuracy. It is shown that, in the case of the $\ell_p$ spaces, the problem is APX-complete if $p\in[1,2]$ and not approximable with constant accuracy if $\mathrm P\neq\mathrm{NP}$ and $p\in(2,\infty)$. Tab. 1, bibliogr. 21.
Keywords: sum vector, search for a vector subset, approximation algorithm, inapproximability bound.
@article{DA_2018_25_4_a8,
     author = {V. V. Shenmaier},
     title = {Approximability of the problem of finding a~vector subset with the longest sum},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {131--148},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2018_25_4_a8/}
}
TY  - JOUR
AU  - V. V. Shenmaier
TI  - Approximability of the problem of finding a~vector subset with the longest sum
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2018
SP  - 131
EP  - 148
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2018_25_4_a8/
LA  - ru
ID  - DA_2018_25_4_a8
ER  - 
%0 Journal Article
%A V. V. Shenmaier
%T Approximability of the problem of finding a~vector subset with the longest sum
%J Diskretnyj analiz i issledovanie operacij
%D 2018
%P 131-148
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2018_25_4_a8/
%G ru
%F DA_2018_25_4_a8
V. V. Shenmaier. Approximability of the problem of finding a~vector subset with the longest sum. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 131-148. http://geodesic.mathdoc.fr/item/DA_2018_25_4_a8/