Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2018_25_4_a7, author = {D. V. Sirotkin and D. S. Malyshev}, title = {On the complexity of the vertex $3$-coloring problem for the hereditary graph classes with forbidden subgraphs of small size}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {112--130}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2018_25_4_a7/} }
TY - JOUR AU - D. V. Sirotkin AU - D. S. Malyshev TI - On the complexity of the vertex $3$-coloring problem for the hereditary graph classes with forbidden subgraphs of small size JO - Diskretnyj analiz i issledovanie operacij PY - 2018 SP - 112 EP - 130 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2018_25_4_a7/ LA - ru ID - DA_2018_25_4_a7 ER -
%0 Journal Article %A D. V. Sirotkin %A D. S. Malyshev %T On the complexity of the vertex $3$-coloring problem for the hereditary graph classes with forbidden subgraphs of small size %J Diskretnyj analiz i issledovanie operacij %D 2018 %P 112-130 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2018_25_4_a7/ %G ru %F DA_2018_25_4_a7
D. V. Sirotkin; D. S. Malyshev. On the complexity of the vertex $3$-coloring problem for the hereditary graph classes with forbidden subgraphs of small size. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 4, pp. 112-130. http://geodesic.mathdoc.fr/item/DA_2018_25_4_a7/
[1] Bonomo F., Chudnovsky M., Maceli P., Schaudt O., Stein M., Zhong M., “Three-coloring and list three-coloring of graphs without induced paths on seven vertices”, Combinatorica, 38:4 (2018), 779–801 | DOI | MR | Zbl
[2] Broersma H. J., Golovach P. A., Paulusma D., Song J., “Updating the complexity status of coloring graphs without a fixed induced linear forest”, Theor. Comp. Sci., 414:1 (2012), 9–19 | DOI | MR | Zbl
[3] Brooks R. L., “On colouring the nodes of a network”, Proc. Camb. Philos. Soc., Math. Phys. Sci., 37:2 (1941), 194–197 | DOI | MR | Zbl
[4] Dabrowski K., Golovach P. A., Paulusma D., “Colouring of graphs with Ramsey-type forbidden subgraphs”, Theor. Comput. Sci., 522 (2014), 34–43 | DOI | MR | Zbl
[5] Dabrowski K., Lozin V. V., Raman R., Ries B., “Colouring vertices of triangle-free graphs without forests”, Discrete Math., 312:7 (2012), 1372–1385 | DOI | MR | Zbl
[6] Dailey D. P., “Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete”, Discrete Math., 30:3 (1980), 289–293 | DOI | MR | Zbl
[7] Golovach P. A., Paulusma D., Ries B., “Coloring graphs characterized by a forbidden subgraph”, Discrete Appl. Math., 180 (2015), 101–110 | DOI | MR | Zbl
[8] Golovach P. A., Paulusma D., Song J., “4-Coloring $H$-free graphs when $H$ is small”, Discrete Appl. Math., 161:1–2 (2013), 140–150 | DOI | MR | Zbl
[9] Hoàng C., Kamiński M., Lozin V. V., Sawada J., Shu X., “Deciding $k$-colorability of $P_5$-free graphs in polynomial time”, Algorithmica, 57 (2010), 74–81 | DOI | MR | Zbl
[10] Hoàng C., Lazzarato D., “Polynomial-time algorithms for minimum weighted colorings of $(P_5,\overline{P_5})$-free graphs and similar graph classes”, Discrete Appl. Math., 186 (2015), 105–111 | DOI | MR
[11] Huang S., “Improved complexity results on $k$-coloring $P_t$-free graphs”, Eur. J. Comb., 51 (2016), 336–346 | DOI | MR | Zbl
[12] Král D., Kratochvíl J., Tuza Z., Woeginger G., “Complexity of coloring graphs without forbidden induced subgraphs”, Graph-Theoretic Concepts in Computer Science, Proc. 27th Int. Workshop (Boltenhagen, Germany, June 14–16, 2001), Lect. Notes Comput. Sci., 2204, Springer-Verl., Heidelberg, 2001, 254–262 | DOI | MR | Zbl
[13] Lozin V. V., Kamiński M., “Coloring edges and vertices of graphs without short or long cycles”, Contrib. Discrete Math., 2:1 (2007), 61–66 | MR | Zbl
[14] Lozin V. V., Malyshev D. S., “Vertex coloring of graphs with few obstructions”, Discrete Appl. Math., 216 (2017), 273–280 | DOI | MR | Zbl
[15] Malyshev D. S., “The coloring problem for classes with two small obstructions”, Optim. Lett., 8:8 (2014), 2261–2270 | DOI | MR | Zbl
[16] Malyshev D. S., “The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs”, Discrete Math., 338:11 (2015), 1860–1865 | DOI | MR | Zbl
[17] Malyshev D. S., “Two cases of polynomial-time solvability for the coloring problem”, J. Comb. Optim., 31:2 (2015), 833–845 | DOI | MR
[18] Malyshev D. S., “The complexity of the vertex 3-colorability problem for some hereditary classes defined by 5-vertex forbidden induced subgraphs”, Graphs Comb., 33:4 (2017), 1009–1022 | DOI | MR | Zbl
[19] Malyshev D. S., “Polynomial-time approximation algorithms for the coloring problem in some cases”, J. Comb. Optim., 33:3 (2017), 809–813 | DOI | MR | Zbl
[20] Malyshev D. S., Lobanova O. O., “Two complexity results for the vertex coloring problem”, Discrete Appl. Math., 219 (2017), 158–166 | DOI | MR | Zbl