Semigroup and metric characteristics of locally primitive matrices and graphs
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 124-143
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of local primitivity for a quadratic $0,1$-matrix of size $n\times n$ is extended to any part of the matrix which need not be a rectangular submatrix. A similar generalization is carried out for any set $B$ of pairs of initial and final vertices of the paths in an $n$-vertex digraph, $B\subseteq\{(i,j)\colon1\le i,j \le n\}$. We establish the relationship between the local $B$-exponent of a matrix (digraph) and its characteristics such as the cyclic depth and period, the number of nonprimitive matrices, and the number of nonidempotent matrices in the multiplicative semigroup of all quadratic $0,1$-matrices of order $n$, etc. We obtain a criterion of $B$-primitivity and an upper bound for the $B$-exponent. We also introduce some new metric characteristics for a locally primitive digraph $\Gamma$: the $k,r$-exporadius, the $k,r$-expocenter, where $1\le k,r\le n$, and the matex which is defined as the matrix of order $n$ of all local exponents in the digraph $\Gamma$. An example of computation of the matex is given for the $n$-vertex Wielandt digraph. Using the introduced characteristics, we propose an idea for algorithmically constructing realizable $s$-boxes (elements of round functions of block ciphers) with a relatively wide range of sizes. Tab. 2, illustr. 1, bibliogr. 13.
Keywords:
mixing matrix, locally primitive matrix, exponent of a matrix, cyclic matrix semigroup.
Mots-clés : primitive matrix
Mots-clés : primitive matrix
@article{DA_2018_25_2_a6,
author = {V. M. Fomichev},
title = {Semigroup and metric characteristics of locally primitive matrices and graphs},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {124--143},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2018_25_2_a6/}
}
TY - JOUR AU - V. M. Fomichev TI - Semigroup and metric characteristics of locally primitive matrices and graphs JO - Diskretnyj analiz i issledovanie operacij PY - 2018 SP - 124 EP - 143 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2018_25_2_a6/ LA - ru ID - DA_2018_25_2_a6 ER -
V. M. Fomichev. Semigroup and metric characteristics of locally primitive matrices and graphs. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 124-143. http://geodesic.mathdoc.fr/item/DA_2018_25_2_a6/