Mots-clés : primitive matrix
@article{DA_2018_25_2_a6,
author = {V. M. Fomichev},
title = {Semigroup and metric characteristics of locally primitive matrices and graphs},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {124--143},
year = {2018},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2018_25_2_a6/}
}
V. M. Fomichev. Semigroup and metric characteristics of locally primitive matrices and graphs. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 124-143. http://geodesic.mathdoc.fr/item/DA_2018_25_2_a6/
[1] S. N. Kyazhin, V. M. Fomichev, “Local primitiveness of graphs and nonnegative matrices”, Prikl. Diskretn. Mat., 2014, no. 3, 68–80 (Russian)
[2] V. M. Fomichev, “On characteristics of local primitive matrices and digraphs”, Prikl. Diskretn. Mat. Prilozh., 2017, no. 10, 96–99 (Russian) | DOI
[3] Fomichev V. M., Zadorozhnyi D. I., Koreneva A. M., Lolich D. M., Yuzbashev A. V., “Ob algoritmicheskoi realizatsii $s$-boksov”, Dokl. XIX Nauch.-prakt. mezhdunar. konf. “RusKripto-2017” (Moskovskaya oblast, 21–24 marta 2017 g.) http://www.ruscrypto.ru/resource/archive/rc2017/files/02_fomitchev_zadorozhny_koreneva_lolich_yuzbashev.pdf
[4] V. M. Fomichev, S. N. Kyazhin, “Local primitivity of matrices and graphs”, J. Appl. Ind. Math., 11:1 (2017), 26–39 | DOI | DOI | MR | Zbl
[5] V. M. Fomichev, D. A. Melnikov, Cryptographic methods of information security. Part 1: Mathematical aspects, YURAIT, Moscow, 2016 (Russian)
[6] Berger T. P., Francq J., Minier M., Thomas G., “Extended generalized Feistel networks using matrix representation to propose a new lightweight block cipher: Lilliput”, IEEE Tran. Comput., 65:7 (2016), 2074–2089 | DOI | MR | Zbl
[7] Berger T. P., Minier M., Thomas G., “Extended generalized Feistel networks using matrix representation”, Selected Areas in Cryptography, Rev. Selected Pap. 20th Int. Conf. SAC (Burnaby, Canada, Aug. 14–16, 2013), Lect. Notes Comput. Sci., 8282, Springer-Verl., Heidelberg, 2014, 289–305 | DOI | MR | Zbl
[8] Brualdi R. A., Liu B., “Generalized exponents of primitive directed graphs”, J. Graph Theory, 14 (1990), 483–499 | DOI | MR | Zbl
[9] Huang Y., Liu B., “Generalized $r$-exponents of primitive digraphs”, Taiwan. J. Math., 15:5 (2011), 1999–2012 | DOI | MR | Zbl
[10] Liu B., “Generalized exponents of Boolean matrices”, Lin. Algebra Appl., 373 (2003), 169–182 | DOI | MR | Zbl
[11] Miao Z., Zhang K., “The local exponent sets of primitive digraphs”, Lin. Algebra Appl., 307 (2000), 15–33 | DOI | MR | Zbl
[12] Shen J., Neufeld S., “Local exponents of primitive digraphs”, Lin. Algebra Appl., 268 (1998), 117–129 | DOI | MR | Zbl
[13] Suzaki T., Minematsu K., “Improving the generalized Feistel”, Fast Software Encryption, Rev. Selected Pap. 17th Int. Workshop FSE (Seoul, Korea, Feb. 7–10, 2010), Lect. Notes Comput. Sci., 6147, Springer-Verl., Heidelberg, 2010, 19–39 | DOI | Zbl