Semigroup and metric characteristics of locally primitive matrices and graphs
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 124-143

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of local primitivity for a quadratic $0,1$-matrix of size $n\times n$ is extended to any part of the matrix which need not be a rectangular submatrix. A similar generalization is carried out for any set $B$ of pairs of initial and final vertices of the paths in an $n$-vertex digraph, $B\subseteq\{(i,j)\colon1\le i,j \le n\}$. We establish the relationship between the local $B$-exponent of a matrix (digraph) and its characteristics such as the cyclic depth and period, the number of nonprimitive matrices, and the number of nonidempotent matrices in the multiplicative semigroup of all quadratic $0,1$-matrices of order $n$, etc. We obtain a criterion of $B$-primitivity and an upper bound for the $B$-exponent. We also introduce some new metric characteristics for a locally primitive digraph $\Gamma$: the $k,r$-exporadius, the $k,r$-expocenter, where $1\le k,r\le n$, and the matex which is defined as the matrix of order $n$ of all local exponents in the digraph $\Gamma$. An example of computation of the matex is given for the $n$-vertex Wielandt digraph. Using the introduced characteristics, we propose an idea for algorithmically constructing realizable $s$-boxes (elements of round functions of block ciphers) with a relatively wide range of sizes. Tab. 2, illustr. 1, bibliogr. 13.
Keywords: mixing matrix, locally primitive matrix, exponent of a matrix, cyclic matrix semigroup.
Mots-clés : primitive matrix
@article{DA_2018_25_2_a6,
     author = {V. M. Fomichev},
     title = {Semigroup and metric characteristics of locally primitive matrices and graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {124--143},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2018_25_2_a6/}
}
TY  - JOUR
AU  - V. M. Fomichev
TI  - Semigroup and metric characteristics of locally primitive matrices and graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2018
SP  - 124
EP  - 143
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2018_25_2_a6/
LA  - ru
ID  - DA_2018_25_2_a6
ER  - 
%0 Journal Article
%A V. M. Fomichev
%T Semigroup and metric characteristics of locally primitive matrices and graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2018
%P 124-143
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2018_25_2_a6/
%G ru
%F DA_2018_25_2_a6
V. M. Fomichev. Semigroup and metric characteristics of locally primitive matrices and graphs. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 124-143. http://geodesic.mathdoc.fr/item/DA_2018_25_2_a6/