On trees of bounded degree with maximal number of greatest independent sets
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 101-123

Voir la notice de l'article provenant de la source Math-Net.Ru

Given $n$ and $d$, we describe the structure of trees with the maximal possible number of greatest independent sets in the class of $n$-vertex trees of vertex degree at most $d$. We show that the extremal tree is unique for all even $n$ but uniqueness may fail for odd $n$; moreover, for $d=3$ and every odd $n\geq7$, there are exactly $\lceil(n-3)/4\rceil+1$ extremal trees. In the paper, the problem of searching for extremal $(n,d)$-trees is also considered for the $2$-caterpillars; i.e., the trees in which every vertex lies at distance at most $2$ from some simple path. Given $n$ and $d\in\{3,4\}$, we completely reveal all extremal $2$-caterpillars on $n$ vertices each of which has degree at most $d$. Illustr. 9, bibliogr. 10.
Keywords: extremal combinatorics, tree, greatest independent set.
@article{DA_2018_25_2_a5,
     author = {D. S. Taletskii and D. S. Malyshev},
     title = {On trees of bounded degree with maximal number of greatest independent sets},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {101--123},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2018_25_2_a5/}
}
TY  - JOUR
AU  - D. S. Taletskii
AU  - D. S. Malyshev
TI  - On trees of bounded degree with maximal number of greatest independent sets
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2018
SP  - 101
EP  - 123
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2018_25_2_a5/
LA  - ru
ID  - DA_2018_25_2_a5
ER  - 
%0 Journal Article
%A D. S. Taletskii
%A D. S. Malyshev
%T On trees of bounded degree with maximal number of greatest independent sets
%J Diskretnyj analiz i issledovanie operacij
%D 2018
%P 101-123
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2018_25_2_a5/
%G ru
%F DA_2018_25_2_a5
D. S. Taletskii; D. S. Malyshev. On trees of bounded degree with maximal number of greatest independent sets. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 101-123. http://geodesic.mathdoc.fr/item/DA_2018_25_2_a5/