On trees of bounded degree with maximal number of greatest independent sets
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 101-123
Voir la notice de l'article provenant de la source Math-Net.Ru
Given $n$ and $d$, we describe the structure of trees with the maximal possible number of greatest independent sets in the class of $n$-vertex trees of vertex degree at most $d$. We show that the extremal tree is unique for all even $n$ but uniqueness may fail for odd $n$; moreover, for $d=3$ and every odd $n\geq7$, there are exactly $\lceil(n-3)/4\rceil+1$ extremal trees. In the paper, the problem of searching for extremal $(n,d)$-trees is also considered for the $2$-caterpillars; i.e., the trees in which every vertex lies at distance at most $2$ from some simple path. Given $n$ and $d\in\{3,4\}$, we completely reveal all extremal $2$-caterpillars on $n$ vertices each of which has degree at most $d$. Illustr. 9, bibliogr. 10.
Keywords:
extremal combinatorics, tree, greatest independent set.
@article{DA_2018_25_2_a5,
author = {D. S. Taletskii and D. S. Malyshev},
title = {On trees of bounded degree with maximal number of greatest independent sets},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {101--123},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2018_25_2_a5/}
}
TY - JOUR AU - D. S. Taletskii AU - D. S. Malyshev TI - On trees of bounded degree with maximal number of greatest independent sets JO - Diskretnyj analiz i issledovanie operacij PY - 2018 SP - 101 EP - 123 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2018_25_2_a5/ LA - ru ID - DA_2018_25_2_a5 ER -
D. S. Taletskii; D. S. Malyshev. On trees of bounded degree with maximal number of greatest independent sets. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 101-123. http://geodesic.mathdoc.fr/item/DA_2018_25_2_a5/