On trees of bounded degree with maximal number of greatest independent sets
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 101-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given $n$ and $d$, we describe the structure of trees with the maximal possible number of greatest independent sets in the class of $n$-vertex trees of vertex degree at most $d$. We show that the extremal tree is unique for all even $n$ but uniqueness may fail for odd $n$; moreover, for $d=3$ and every odd $n\geq7$, there are exactly $\lceil(n-3)/4\rceil+1$ extremal trees. In the paper, the problem of searching for extremal $(n,d)$-trees is also considered for the $2$-caterpillars; i.e., the trees in which every vertex lies at distance at most $2$ from some simple path. Given $n$ and $d\in\{3,4\}$, we completely reveal all extremal $2$-caterpillars on $n$ vertices each of which has degree at most $d$. Illustr. 9, bibliogr. 10.
Keywords: extremal combinatorics, tree, greatest independent set.
@article{DA_2018_25_2_a5,
     author = {D. S. Taletskii and D. S. Malyshev},
     title = {On trees of bounded degree with maximal number of greatest independent sets},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {101--123},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2018_25_2_a5/}
}
TY  - JOUR
AU  - D. S. Taletskii
AU  - D. S. Malyshev
TI  - On trees of bounded degree with maximal number of greatest independent sets
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2018
SP  - 101
EP  - 123
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2018_25_2_a5/
LA  - ru
ID  - DA_2018_25_2_a5
ER  - 
%0 Journal Article
%A D. S. Taletskii
%A D. S. Malyshev
%T On trees of bounded degree with maximal number of greatest independent sets
%J Diskretnyj analiz i issledovanie operacij
%D 2018
%P 101-123
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2018_25_2_a5/
%G ru
%F DA_2018_25_2_a5
D. S. Taletskii; D. S. Malyshev. On trees of bounded degree with maximal number of greatest independent sets. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 101-123. http://geodesic.mathdoc.fr/item/DA_2018_25_2_a5/

[1] Andriantiana E., “Energy, Hosoya index and Merrifield–Simmons index of trees with prescribed degree sequence”, Discrete Appl. Math., 161:6 (2013), 724–741 | DOI | MR | Zbl

[2] Griggs J., Grinstead C., Guichard D., “The number of maximal independent sets in a connected graph”, Discrete Math., 68:2–3 (1988), 211–220 | DOI | MR | Zbl

[3] Heuberger C., Wagner S., “Maximizing the number of independent subsets over trees with bounded degree”, J. Graph Theory, 58:1 (2008), 49–68 | DOI | MR | Zbl

[4] Hujter M., Tuza Z., “The number of maximal independent sets in triangle-free graphs”, SIAM J. Discrete Math., 6:2 (1993), 284–288 | DOI | MR | Zbl

[5] Jou M., Chang G., “Maximal independent sets in graphs with at most one cycle”, Discrete Appl. Math., 79:1–3 (1997), 67–73 | DOI | MR | Zbl

[6] Jou M., Chang G., “The number of maximum independent sets in graphs”, J. Graph Theory, 4:4 (2000), 685–695 | MR | Zbl

[7] Liu J., “Maximal independent sets in bipartite graphs”, J. Graph Theory, 17:4 (1993), 495–507 | DOI | MR | Zbl

[8] Moon J., Moser L., “On cliques in graphs”, Isr. J. Math., 3 (1965), 23–28 | DOI | MR | Zbl

[9] Wilf H., “The number of maximal independent sets in a tree”, SIAM J. Algebraic Discrete Methods, 7:1 (1986), 125–130 | DOI | MR | Zbl

[10] Zito J., “The structure and maximum number of maximum independent sets in trees”, J. Graph Theory, 15:2 (1991), 207–221 | DOI | MR | Zbl