Complexity estimation for an algorithm of searching for zero of a~piecewise linear convex function
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 82-100
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that the problem of the orthogonal projection of a point to the standard simplex can be reduced to solution of a scalar equation. In this article, the complexity is analyzed of an algorithm of searching for zero of a piecewise linear convex function which is proposed by N. Maculan and G. Galdino de Paula, Jr. (Oper. Res. Lett. 8 (4), 219–222 (1989)). The analysis is carried out of the best and worst cases of the input data for the algorithm. To this end, the largest and smallest numbers of iterations of the algorithm are studied as functions of the size of the input data. It is shown that, in the case of equality of elements of the input set, the algorithm performs the smallest number of iterations. In the case of different elements of the input set, the number of iterations is maximal and depends rather weakly on the particular values of the elements of the set. The results of numerical experiments with random input data of large dimension are presented. Tab. 2, illustr. 2, bibliogr. 34.
Keywords:
standard simplex, orthogonal projection of a point, zeros of function.
@article{DA_2018_25_2_a4,
author = {E. V. Prosolupov and G. Sh. Tamasyan},
title = {Complexity estimation for an algorithm of searching for zero of a~piecewise linear convex function},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {82--100},
publisher = {mathdoc},
volume = {25},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2018_25_2_a4/}
}
TY - JOUR AU - E. V. Prosolupov AU - G. Sh. Tamasyan TI - Complexity estimation for an algorithm of searching for zero of a~piecewise linear convex function JO - Diskretnyj analiz i issledovanie operacij PY - 2018 SP - 82 EP - 100 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2018_25_2_a4/ LA - ru ID - DA_2018_25_2_a4 ER -
%0 Journal Article %A E. V. Prosolupov %A G. Sh. Tamasyan %T Complexity estimation for an algorithm of searching for zero of a~piecewise linear convex function %J Diskretnyj analiz i issledovanie operacij %D 2018 %P 82-100 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2018_25_2_a4/ %G ru %F DA_2018_25_2_a4
E. V. Prosolupov; G. Sh. Tamasyan. Complexity estimation for an algorithm of searching for zero of a~piecewise linear convex function. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 82-100. http://geodesic.mathdoc.fr/item/DA_2018_25_2_a4/