On a~partial order related to divisibility
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 54-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We estimate the number of monotone discrete functions related to the divisibility of numbers. Illustr. 1, bibliogr. 6.
Keywords: partial order, monotone function
Mots-clés : antichain.
@article{DA_2018_25_2_a2,
     author = {V. K. Leontiev},
     title = {On a~partial order related to divisibility},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {54--61},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2018_25_2_a2/}
}
TY  - JOUR
AU  - V. K. Leontiev
TI  - On a~partial order related to divisibility
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2018
SP  - 54
EP  - 61
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2018_25_2_a2/
LA  - ru
ID  - DA_2018_25_2_a2
ER  - 
%0 Journal Article
%A V. K. Leontiev
%T On a~partial order related to divisibility
%J Diskretnyj analiz i issledovanie operacij
%D 2018
%P 54-61
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2018_25_2_a2/
%G ru
%F DA_2018_25_2_a2
V. K. Leontiev. On a~partial order related to divisibility. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 54-61. http://geodesic.mathdoc.fr/item/DA_2018_25_2_a2/

[1] G. Hansel, “Sur le nombre des fonctions booléennes monotones de $n$ variables”, C. R. Acad. Sci. Paris Sér. B, 262 (1966), 1088–1090 (French) | MR | Zbl

[2] A. D. Korshunov, “On the number of monotone Boolean functions”, Problems of Cybernetics, 38, Nauka, Moscow, 1981, 5–108 (Russian)

[3] V. K. Leontiev, Combinatorics and Information, Pt. 1, MFTI, Moscow, 2015 (Russian)

[4] K. A. Rybnikov, An Introduction to Combinatorial Analysis, MGU, Moscow, 1985 (Russian) | MR

[5] R. P. Stanley, Enumerative Combinatorics, v. 1, Wadsworth Brooks/Cole Adv. Books Softw., Monterey, 1986 | MR | MR | Zbl

[6] Schröder B., Ordered sets: An introduction with connections from combinatorics to topology, Birkhäuser, Basel, 2016 | Zbl