On a partial order related to divisibility
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 54-61
Cet article a éte moissonné depuis la source Math-Net.Ru
We estimate the number of monotone discrete functions related to the divisibility of numbers. Illustr. 1, bibliogr. 6.
Keywords:
partial order, monotone function
Mots-clés : antichain.
Mots-clés : antichain.
@article{DA_2018_25_2_a2,
author = {V. K. Leontiev},
title = {On a~partial order related to divisibility},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {54--61},
year = {2018},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2018_25_2_a2/}
}
V. K. Leontiev. On a partial order related to divisibility. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 2, pp. 54-61. http://geodesic.mathdoc.fr/item/DA_2018_25_2_a2/
[1] G. Hansel, “Sur le nombre des fonctions booléennes monotones de $n$ variables”, C. R. Acad. Sci. Paris Sér. B, 262 (1966), 1088–1090 (French) | MR | Zbl
[2] A. D. Korshunov, “On the number of monotone Boolean functions”, Problems of Cybernetics, 38, Nauka, Moscow, 1981, 5–108 (Russian)
[3] V. K. Leontiev, Combinatorics and Information, Pt. 1, MFTI, Moscow, 2015 (Russian)
[4] K. A. Rybnikov, An Introduction to Combinatorial Analysis, MGU, Moscow, 1985 (Russian) | MR
[5] R. P. Stanley, Enumerative Combinatorics, v. 1, Wadsworth Brooks/Cole Adv. Books Softw., Monterey, 1986 | MR | MR | Zbl
[6] Schröder B., Ordered sets: An introduction with connections from combinatorics to topology, Birkhäuser, Basel, 2016 | Zbl