On the complexity of multivalued logic functions over some infinite basis
Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 1, pp. 42-74

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is the complexity of the realization of $k$-valued logic functions $(k\ge3)$ by logic circuits in the infinite basis consisting of the Post negation (i.e., the function $(x+1)\bmod k$) and all monotone functions. The complexity of the circuit is the total number of elements of this circuit. For an arbitrary function $f$, we find the lower and upper bounds of complexity which differ from one another at most by $1$ and have the form $3\log_3(d(f)+1)+O(1)$, where $d(f)$ is the maximal number of the decrease of the value of $f$ taken over all increasing chains of tuples of values of the variables. We find the exact value of the corresponding Shannon function which characterizes the complexity of the most complex function of a given number of variables. Illustr. 4, bibliogr. 24.
Keywords: multivalued logic functions, logic circuit, infinite basis, inversion complexity.
@article{DA_2018_25_1_a2,
     author = {V. V. Kochergin and A. V. Mikhailovich},
     title = {On the complexity of multivalued logic functions over some infinite basis},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {42--74},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2018_25_1_a2/}
}
TY  - JOUR
AU  - V. V. Kochergin
AU  - A. V. Mikhailovich
TI  - On the complexity of multivalued logic functions over some infinite basis
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2018
SP  - 42
EP  - 74
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2018_25_1_a2/
LA  - ru
ID  - DA_2018_25_1_a2
ER  - 
%0 Journal Article
%A V. V. Kochergin
%A A. V. Mikhailovich
%T On the complexity of multivalued logic functions over some infinite basis
%J Diskretnyj analiz i issledovanie operacij
%D 2018
%P 42-74
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2018_25_1_a2/
%G ru
%F DA_2018_25_1_a2
V. V. Kochergin; A. V. Mikhailovich. On the complexity of multivalued logic functions over some infinite basis. Diskretnyj analiz i issledovanie operacij, Tome 25 (2018) no. 1, pp. 42-74. http://geodesic.mathdoc.fr/item/DA_2018_25_1_a2/