Polynomial-time solvability of the independent set problem in a certain class of subcubic planar graphs
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 3, pp. 35-60

Voir la notice de l'article provenant de la source Math-Net.Ru

The independent set problem for a given simple graph is to compute the size of a maximum subset of its pairwise non-adjacent vertices. In this paper we prove polynomial-time solvability of the problem for subcubic planar graphs not containing an induced tree, obtained by coinciding ends of three paths of lengths 3, 3, and 2 correspondingly. Bibliogr. 10.
Keywords: independent set problem, graph reduction
Mots-clés : efficient algorithm.
@article{DA_2017_24_3_a2,
     author = {D. S. Malyshev and D. V. Sirotkin},
     title = {Polynomial-time solvability of the independent set problem in a certain class of subcubic planar graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {35--60},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_3_a2/}
}
TY  - JOUR
AU  - D. S. Malyshev
AU  - D. V. Sirotkin
TI  - Polynomial-time solvability of the independent set problem in a certain class of subcubic planar graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 35
EP  - 60
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_3_a2/
LA  - ru
ID  - DA_2017_24_3_a2
ER  - 
%0 Journal Article
%A D. S. Malyshev
%A D. V. Sirotkin
%T Polynomial-time solvability of the independent set problem in a certain class of subcubic planar graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 35-60
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_3_a2/
%G ru
%F DA_2017_24_3_a2
D. S. Malyshev; D. V. Sirotkin. Polynomial-time solvability of the independent set problem in a certain class of subcubic planar graphs. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 3, pp. 35-60. http://geodesic.mathdoc.fr/item/DA_2017_24_3_a2/