Perfect colorings of the infinite circulant graph with distances~1 and~2
Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 3, pp. 20-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

A coloring of the vertex set in a graph is called perfect if all its identically colored vertices have identical multisets of colors of their neighbors. Refer as the infinite circulant graph with continuous set of $n$ distances to the Cayley graph of the group $\mathbb{Z}$ with generator set $\{1,2,\ldots,n\}$. We obtain a description of all perfect colorings with an arbitrary number of colors of this graph with distances $1$ and $2$. In 2015, there was made a conjecture characterizing perfect colorings for the infinite circulant graphs with a continuous set of $n$ distances. The obtained result confirms the conjecture for $n = 2$. The problem is still open in the case of $n > 2$. Bibliogr. 12.
Keywords: perfect coloring
Mots-clés : circulant graph, equitable partition.
@article{DA_2017_24_3_a1,
     author = {M. A. Lisitsyna and O. G. Parshina},
     title = {Perfect colorings of the infinite circulant graph with distances~1 and~2},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {20--34},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2017_24_3_a1/}
}
TY  - JOUR
AU  - M. A. Lisitsyna
AU  - O. G. Parshina
TI  - Perfect colorings of the infinite circulant graph with distances~1 and~2
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2017
SP  - 20
EP  - 34
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2017_24_3_a1/
LA  - ru
ID  - DA_2017_24_3_a1
ER  - 
%0 Journal Article
%A M. A. Lisitsyna
%A O. G. Parshina
%T Perfect colorings of the infinite circulant graph with distances~1 and~2
%J Diskretnyj analiz i issledovanie operacij
%D 2017
%P 20-34
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2017_24_3_a1/
%G ru
%F DA_2017_24_3_a1
M. A. Lisitsyna; O. G. Parshina. Perfect colorings of the infinite circulant graph with distances~1 and~2. Diskretnyj analiz i issledovanie operacij, Tome 24 (2017) no. 3, pp. 20-34. http://geodesic.mathdoc.fr/item/DA_2017_24_3_a1/

[1] S. V. Avgustinovich, A. Yu. Vasil'eva, I. V. Sergeeva, “Distance regular colorings of the infinite rectangular grid”, J. Appl. Ind. Math., 6:3 (2012), 280–285 | DOI

[2] S. V. Avgustinovich, M. A. Lisitsyna, “Perfect 2-colorings of transitive cubic graphs”, J. Appl. Ind. Math., 5:4 (2011), 519–528 | DOI | MR

[3] M. A. Lisitsyna, “Perfect 3-colorings of prisms and Möbius ladders”, J. Appl. Ind. Math., 7:2 (2013), 215–220 | DOI | MR | Zbl

[4] M. A. Lisitsyna, S. V. Avgustinovich, “Perfect colorings of the prism graph”, Sib. Electron. Mat. Izv., 13 (2016), 1116–1128 (Russian)

[5] O. G. Parshina, “Perfect 2-colorings of infinite circulant graphs with continuous set of distances”, J. Appl. Ind. Math., 8:3 (2014), 357–361 | DOI | MR | Zbl

[6] S. A. Puzynina, “Perfect colorings of vertices of the graph $G(Z^2)$ in three colors”, Diskretn. Anal. Issled. Oper., Ser. 2, 12:1 (2005), 37–54 (Russian)

[7] D. B. Khoroshilova, “On two-colour perfect colourings of circular graphs”, Diskretn. Anal. Issled. Oper., 16:1 (2009), 80–92 (Russian) | Zbl

[8] D. B. Khoroshilova, “On the parameters of perfect 2-colorings of circulant graphs”, Diskretn. Anal. Issled. Oper., 18:6 (2011), 82–89 (Russian)

[9] D. M. Cvetković, M. Doob,, Spectra of Graphs: Theory and Application, VEB Dtsch. Verl. Wiss., Berlin, 1980 | MR | Zbl

[10] Axenovich M. A., “On multiple coverings of the infinite rectangular grid with balls of constant radius”, Discrete Math., 268:1–3 (2003), 31–48 | DOI | MR | Zbl

[11] Parshina O. G., “Perfect $k$-colorings of infinite circulant graphs with a continuous set of distances”, Abs. Int. Conf. PhD Summer School “Groups and Graphs, Algorithms and Automata” (Yekaterinburg, Aug. 9–15, 2015), UrFU Publ., Yekaterinburg, 2015, 80 (accessed Apr. 16, 2017) http://g2a2.imm.uran.ru/doc/G2A2_Abstracts.pdf

[12] Puzynina S. A., Avgustinovich S. V., “On periodicity of two-dimensional words”, Theor. Comput. Sci., 391 (2008), 178–187 | DOI | MR | Zbl