On the embedding of constant-weight codes into perfect codes
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 4, pp. 26-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that each $q$-ary constant-weight code of weight 3, minimum distance 4, and length $m$ can be embedded in a $q$-ary $1$-perfect code of length $n=(q^m-1)/(q-1)$. Bibliogr. 10.
Keywords: Hamming code, nonlinear perfect code, constant-weight code, $i$-component.
@article{DA_2016_23_4_a1,
     author = {A. M. Romanov},
     title = {On the embedding of constant-weight codes into perfect codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {26--34},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_4_a1/}
}
TY  - JOUR
AU  - A. M. Romanov
TI  - On the embedding of constant-weight codes into perfect codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 26
EP  - 34
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_4_a1/
LA  - ru
ID  - DA_2016_23_4_a1
ER  - 
%0 Journal Article
%A A. M. Romanov
%T On the embedding of constant-weight codes into perfect codes
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 26-34
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_4_a1/
%G ru
%F DA_2016_23_4_a1
A. M. Romanov. On the embedding of constant-weight codes into perfect codes. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 4, pp. 26-34. http://geodesic.mathdoc.fr/item/DA_2016_23_4_a1/

[1] Yu. L. Vasil'ev, “On nongroup close-packed codes”, Problems of Cybernetics, 8, ed. A. A. Lyapunov, Fizmatgiz, Moscow, 1962, 375–378 | Zbl

[2] A. M. Romanov, “A survey of methods for constructing nonlinear perfect binary codes”, J. Appl. Ind. Math., 2:2 (2008), 252–269 | DOI | MR | Zbl

[3] A. M. Romanov, “On admissible families of components of Hamming codes”, J. Appl. Ind. Math., 6:3 (2012), 355–359 | DOI | MR | Zbl

[4] Avgustinovich S. V., Krotov D. S., “Embedding in a perfect code”, J. Comb. Des., 17:5 (2009), 419–423 | DOI | MR | Zbl

[5] Etzion T., Vardy A., “Perfect binary codes: Constructions, properties, and enumeration”, IEEE Trans. Inf. Theory, 40:3 (1994), 754–763 | DOI | MR | Zbl

[6] Etzion T., “Nonequivalent $q$-ary perfect codes”, SIAM J. Discrete Math., 9:3 (1996), 413–423 | DOI | MR | Zbl

[7] Krotov D. S., Sotnikova E. V., “Embedding in $q$-ary 1-perfect codes and partitions”, Discrete Math., 338:11 (2015), 1856–1859 | DOI | MR | Zbl

[8] Lindström B., “On group and nongroup perfect codes in $q$ symbols”, Math. Scand., 25 (1969), 149–158 | DOI | MR | Zbl

[9] Phelps K. T., Villanueva M., “Ranks of $q$-ary 1-perfect codes”, Des. Codes Cryptogr., 27:1–2 (2002), 139–144 | DOI | MR | Zbl

[10] Schönheim J., “On linear and nonlinear single-error-correcting $q$-ary perfect codes”, Inform. Control, 12 (1968), 23–26 | DOI | MR | Zbl