On the embedding of constant-weight codes into perfect codes
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 4, pp. 26-34

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that each $q$-ary constant-weight code of weight 3, minimum distance 4, and length $m$ can be embedded in a $q$-ary $1$-perfect code of length $n=(q^m-1)/(q-1)$. Bibliogr. 10.
Keywords: Hamming code, nonlinear perfect code, constant-weight code, $i$-component.
@article{DA_2016_23_4_a1,
     author = {A. M. Romanov},
     title = {On the embedding of constant-weight codes into perfect codes},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {26--34},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_4_a1/}
}
TY  - JOUR
AU  - A. M. Romanov
TI  - On the embedding of constant-weight codes into perfect codes
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 26
EP  - 34
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_4_a1/
LA  - ru
ID  - DA_2016_23_4_a1
ER  - 
%0 Journal Article
%A A. M. Romanov
%T On the embedding of constant-weight codes into perfect codes
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 26-34
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_4_a1/
%G ru
%F DA_2016_23_4_a1
A. M. Romanov. On the embedding of constant-weight codes into perfect codes. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 4, pp. 26-34. http://geodesic.mathdoc.fr/item/DA_2016_23_4_a1/