Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2016_23_3_a0, author = {V. P. Il'ev and S. D. Il'eva and A. A. Navrotskaya}, title = {Graph clustering with a~constraint on cluster sizes}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {5--20}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2016_23_3_a0/} }
TY - JOUR AU - V. P. Il'ev AU - S. D. Il'eva AU - A. A. Navrotskaya TI - Graph clustering with a~constraint on cluster sizes JO - Diskretnyj analiz i issledovanie operacij PY - 2016 SP - 5 EP - 20 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2016_23_3_a0/ LA - ru ID - DA_2016_23_3_a0 ER -
V. P. Il'ev; S. D. Il'eva; A. A. Navrotskaya. Graph clustering with a~constraint on cluster sizes. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 3, pp. 5-20. http://geodesic.mathdoc.fr/item/DA_2016_23_3_a0/
[1] A. A. Ageev, V. P. Il'ev, A. V. Kononov, A. S. Talevnin, “Computational complexity of the graph approximation problem”, J. Appl. Ind. Math., 1:1 (2007), 1–8 | DOI | MR | Zbl
[2] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | MR | Zbl
[3] V. P. Il'ev, S. D. Il'eva, A. A. Navrotskaya, “Approximation algorithms for graph approximation problems”, J. Appl. Ind. Math., 5:4 (2011), 569–581 | DOI | MR | Zbl
[4] V. P. Il'ev, G. Š. Fridman, “On the problem of approximation by graphs with a fixed number of components”, Sov. Math. Dokl., 25:3 (1982), 666–670 | MR | Zbl
[5] V. P. Il'ev, A. A. Navrotskaya, “Computational complexity of the problem of approximation by graphs with connected components of bounded size”, Prikl. Diskretn. Mat., 2011, no. 3, 80–84
[6] V. P. Il'ev, A. A. Navrotskaya, “An approximate and exact solution to one variant of the problem of clustering interconnected objects”, Proc. XI Int. Asian School-Seminar “Optimization Problems for Complex Systems” (Cholpon-Ata, Kyrghyzstan, July 27 – Aug. 7, 2015), Inst. Vychisl. Mat. Mat. Geofiz. SO RAN, Novosibirsk, 2015, 278–283
[7] A. A. Lyapunov, “On the structure and evolution of control systems in connection with the theory of classification”, Problems of Cybernetics, 27, Fizmatgiz, Moscow, 1973, 7–18
[8] G. Š. Fridman, “A graph approximation problem”, Control Systems, 8, Izd. Inst. Mat., Novosibirsk, 1971, 73–75
[9] G. Š. Fridman, “Investigation of a classifying problem on graphs”, Methods of Modelling and Data Processing, Nauka, Novosibirsk, 1976, 147–177
[10] Ailon N., Charikar M., Newman A., “Aggregating inconsistent information: Ranking and clustering”, J. ACM, 55:5 (2008), 1–27 | DOI | MR
[11] Bansal N., Blum A., Chawla S., “Correlation clustering”, Mach. Learn., 56:1–3 (2004), 89–113 | DOI | MR | Zbl
[12] Ben-Dor A., Shamir R., Yakhimi Z., “Clustering gene expression patterns”, J. Comput. Biol., 6:3–4 (1999), 281–297 | DOI
[13] Charikar M., Guruswami V., Wirth A., “Clustering with qualitative information”, J. Comput. Syst. Sci., 71:3 (2005), 360–383 | DOI | MR | Zbl
[14] Coleman T., Saunderson J., Wirth A., “A local-search 2-approximation for 2-correlation-clustering”, Algorithms – ESA 2008, Proc. 16th Annu. Eur. Symp. Algorithms (Karlsruhe, Germany, Sept. 15–17, 2008), Lect. Notes Comput. Sci., 5193, Springer-Verl., Heidelberg, 2008, 308–319 | DOI | Zbl
[15] Giotis I., Guruswami V., “Correlation clustering with a fixed number of clusters”, Theory Comput., 2:1 (2006), 249–266 | DOI | MR | Zbl
[16] Křivánek M., Morávek J., “NP-hard problems in hierarchical-tree clustering”, Acta Inf., 23 (1986), 311–323 | DOI | MR
[17] Schaeffer S. E., “Graph clustering”, Comput. Sci. Rev., 1:1 (2007), 27–64 | DOI | MR | Zbl
[18] Shamir R., Sharan R., Tsur D., “Cluster graph modification problems”, Discrete Appl. Math., 144:1–2 (2004), 173–182 | DOI | MR | Zbl
[19] Tomescu I., “La reduction minimale d'un graphe à une reunion de cliques”, Discrete Math., 10:1–2 (1974), 173–179 (French) | DOI | MR | Zbl
[20] Zahn C. T. (Jr.), “Approximating symmetric relations by equivalence relations”, J. Soc. Ind. Appl. Math., 12:4 (1964), 840–847 | DOI | MR | Zbl