Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2016_23_1_a6, author = {A. B. Zinchenko}, title = {Polytopes of special classes of balanced games with transferable utility}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {97--112}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2016_23_1_a6/} }
A. B. Zinchenko. Polytopes of special classes of balanced games with transferable utility. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 97-112. http://geodesic.mathdoc.fr/item/DA_2016_23_1_a6/
[1] O. N. Bondareva, “Some applications of linear programming methods to cooperative game theory”, Problems of Cybernetics, 10, ed. A. A. Lyapunov, Fizmatgiz, Moscow, 1963, 119–139 | MR | Zbl
[2] V. A. Vasil'ev, “Extreme points of the Weber polytope”, Diskretn. Anal. Issled. Oper., Ser. 1, 10:2 (2003), 17–55 | MR | Zbl
[3] A. B. Zinchenko, “Properties of a polytope of special set functions”, Izv. VUZ., Sev.-Kavk. Reg., Ser. Estestv. Nauki, 2012, no. 1, 13–17
[4] A. B. Zinchenko, “Stability of cores of a cooperative game in characteristic function form”, Izv. VUZ., Sev.-Kavk. Reg., Ser. Estestv. Nauki, 2014, no. 3, 14–18
[5] A. B. Zinchenko, G. V. Mironenko, P. A. Provotorova, “A consensus value for games with coalition structure”, Mat. Teor. Igr Prilozh., 2:1 (2010), 93–106 | Zbl
[6] Driessen T. S. H., Fragnelli V., Katsev I. V., Khmelnitskaya A. B., “A game theoretic approach to co-insurance situations”, Contrib. Game Theory Manage, 3 (2010), 49–66 | MR
[7] Driessen T. S. H., Tijs S. H., “The $\tau$-value, the nucleolus and the core for a subclass of games”, Methods Oper. Res., 46 (1983), 395–406 | MR
[8] Muto S., Nakayama M., Potters J., Tijs S., “On big boss games”, Econ. Stud. Quarterly, 39:4 (1988), 303–321 | MR
[9] Potters J., Poos R., Tijs S., Muto S., “Clan games”, Games Econ. Behav., 1:3 (1989), 275–293 | DOI | MR | Zbl
[10] Shapley L. S., “On balanced sets and cores”, Naval Res. Logist. Quarterly, 14:4 (1967), 453–460 | DOI
[11] Shapley L. S., “Cores of convex games”, Int. J. Game Theory, 1:1 (1971), 11–26 | DOI | MR | Zbl
[12] Voorneveld M., Grahn S., A minimal test for convex games and the Shapley value, Working paper series No. 2001:2, Department of Economics Methods of Operations Research, 2001, 8 pp.
[13] Zinchenko A. B., “On polytope of (0-1)-normal big boss games: redundancy and extreme points”, Contrib. Game Theory Manage, 5, eds. L. A. Petrosyan, N. A. Zenkevich, Grad. Sch. Manag. SPbU, St. Petersburg, 2012, 386–397 | MR
[14] Zinchenko A. B., “A simple way to obtain the sufficient nonemptiness conditions for core of TU game”, Contributions to Game Theory and Management, 6, eds. L. A. Petrosyan, N. A. Zenkevich, Grad. Sch. Manag. SPbU, St. Petersburg, 2013, 447–457 | MR
[15] Zinchenko A. B., “Von Neumann–Morgenstern solutions for 1-convex games”, Appl. Math. Sci., 9:4 (2015), 161–169