Polytopes of special classes of balanced games with transferable utility
Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 97-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The polytopes of $(0,1)$-normalized convex and $1$-convex (dual simplex) $n$-person TU-games, as well as monotonic big boss games are considered. The problems of characterization of extreme points of polytopes of $1$-convex games, symmetric convex games and big boss games, symmetric w.r.t. coalition of powerless agents, are solved. For other polytopes, the description of subsets of extreme points is given. Tab. 2, bibliogr. 15.
Keywords: TU-game, balancedness, $1$-convexity, convexity, big boss game.
@article{DA_2016_23_1_a6,
     author = {A. B. Zinchenko},
     title = {Polytopes of special classes of balanced games with transferable utility},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {97--112},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2016_23_1_a6/}
}
TY  - JOUR
AU  - A. B. Zinchenko
TI  - Polytopes of special classes of balanced games with transferable utility
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2016
SP  - 97
EP  - 112
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2016_23_1_a6/
LA  - ru
ID  - DA_2016_23_1_a6
ER  - 
%0 Journal Article
%A A. B. Zinchenko
%T Polytopes of special classes of balanced games with transferable utility
%J Diskretnyj analiz i issledovanie operacij
%D 2016
%P 97-112
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2016_23_1_a6/
%G ru
%F DA_2016_23_1_a6
A. B. Zinchenko. Polytopes of special classes of balanced games with transferable utility. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 97-112. http://geodesic.mathdoc.fr/item/DA_2016_23_1_a6/

[1] O. N. Bondareva, “Some applications of linear programming methods to cooperative game theory”, Problems of Cybernetics, 10, ed. A. A. Lyapunov, Fizmatgiz, Moscow, 1963, 119–139 | MR | Zbl

[2] V. A. Vasil'ev, “Extreme points of the Weber polytope”, Diskretn. Anal. Issled. Oper., Ser. 1, 10:2 (2003), 17–55 | MR | Zbl

[3] A. B. Zinchenko, “Properties of a polytope of special set functions”, Izv. VUZ., Sev.-Kavk. Reg., Ser. Estestv. Nauki, 2012, no. 1, 13–17

[4] A. B. Zinchenko, “Stability of cores of a cooperative game in characteristic function form”, Izv. VUZ., Sev.-Kavk. Reg., Ser. Estestv. Nauki, 2014, no. 3, 14–18

[5] A. B. Zinchenko, G. V. Mironenko, P. A. Provotorova, “A consensus value for games with coalition structure”, Mat. Teor. Igr Prilozh., 2:1 (2010), 93–106 | Zbl

[6] Driessen T. S. H., Fragnelli V., Katsev I. V., Khmelnitskaya A. B., “A game theoretic approach to co-insurance situations”, Contrib. Game Theory Manage, 3 (2010), 49–66 | MR

[7] Driessen T. S. H., Tijs S. H., “The $\tau$-value, the nucleolus and the core for a subclass of games”, Methods Oper. Res., 46 (1983), 395–406 | MR

[8] Muto S., Nakayama M., Potters J., Tijs S., “On big boss games”, Econ. Stud. Quarterly, 39:4 (1988), 303–321 | MR

[9] Potters J., Poos R., Tijs S., Muto S., “Clan games”, Games Econ. Behav., 1:3 (1989), 275–293 | DOI | MR | Zbl

[10] Shapley L. S., “On balanced sets and cores”, Naval Res. Logist. Quarterly, 14:4 (1967), 453–460 | DOI

[11] Shapley L. S., “Cores of convex games”, Int. J. Game Theory, 1:1 (1971), 11–26 | DOI | MR | Zbl

[12] Voorneveld M., Grahn S., A minimal test for convex games and the Shapley value, Working paper series No. 2001:2, Department of Economics Methods of Operations Research, 2001, 8 pp.

[13] Zinchenko A. B., “On polytope of (0-1)-normal big boss games: redundancy and extreme points”, Contrib. Game Theory Manage, 5, eds. L. A. Petrosyan, N. A. Zenkevich, Grad. Sch. Manag. SPbU, St. Petersburg, 2012, 386–397 | MR

[14] Zinchenko A. B., “A simple way to obtain the sufficient nonemptiness conditions for core of TU game”, Contributions to Game Theory and Management, 6, eds. L. A. Petrosyan, N. A. Zenkevich, Grad. Sch. Manag. SPbU, St. Petersburg, 2013, 447–457 | MR

[15] Zinchenko A. B., “Von Neumann–Morgenstern solutions for 1-convex games”, Appl. Math. Sci., 9:4 (2015), 161–169