Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2016_23_1_a5, author = {G. G. Zabudsky and N. S. Veremchuk}, title = {An algorithm for approximate solution to the {Weber} problem on a~line with forbidden gaps}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {82--96}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2016_23_1_a5/} }
TY - JOUR AU - G. G. Zabudsky AU - N. S. Veremchuk TI - An algorithm for approximate solution to the Weber problem on a~line with forbidden gaps JO - Diskretnyj analiz i issledovanie operacij PY - 2016 SP - 82 EP - 96 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2016_23_1_a5/ LA - ru ID - DA_2016_23_1_a5 ER -
%0 Journal Article %A G. G. Zabudsky %A N. S. Veremchuk %T An algorithm for approximate solution to the Weber problem on a~line with forbidden gaps %J Diskretnyj analiz i issledovanie operacij %D 2016 %P 82-96 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2016_23_1_a5/ %G ru %F DA_2016_23_1_a5
G. G. Zabudsky; N. S. Veremchuk. An algorithm for approximate solution to the Weber problem on a~line with forbidden gaps. Diskretnyj analiz i issledovanie operacij, Tome 23 (2016) no. 1, pp. 82-96. http://geodesic.mathdoc.fr/item/DA_2016_23_1_a5/
[1] E. N. Goncharov, Yu. A. Kochetov, “Probabilistic search with exclusions for discrete unconstrained optimization”, Diskretn. Anal. Issled. Oper., Ser. 2, 9:2 (2002), 13–30 | MR | Zbl
[2] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 | MR | MR | Zbl
[3] A. I. Erzin, J. D. Cho, “Concurrent placement and routing in the design of integrated circuits”, Autom. Remote Control, 64:12 (2003), 1988–1999 | DOI | MR | Zbl
[4] G. G. Zabudskii, I. V. Amzin, “Algorithms of compact location for technological equipment on parallel lines”, Sib. Zh. Ind. Mat., 16:3 (2013), 86–94 | MR | Zbl
[5] G. G. Zabudskii, N. S. Veremchuk, “Algorithms of approximate solution of the Weber problem on a line with forbidden gaps”, Proc. XV All-Russian Conf. “Mathematical Programming and Applications” (Ekaterinburg, Russia, Mar. 2–6, 2015), IMM UrO RAN, Ekaterinburg, 2015, 133
[6] E. A. Mukhacheva, “The review and prospects of development of combinatorial methods for solution of cutting and packing problems”, Proc. Russian Conf. “Discrete Optimization and Operation Research” (Novosibirsk, Russia, June 24–28, 2002), Izd. Inst. Mat., Novosibirsk, 2002, 80–87
[7] A. V. Panyukov, “The problem of locating rectangular plants with minimal cost for the connecting network”, Diskretn. Anal. Issled. Oper., Ser. 2, 8:1 (2001), 70–87 | MR | Zbl
[8] A. S. Rudnev, “Probabilistic tabu search algorithm for the packing circles and rectangles into the strip”, Diskretn. Anal. Issled. Oper., 16:4 (2009), 61–86 | MR | Zbl
[9] Yu. G. Stoyan, S. V. Yakovlev, Mathematical Models and Optimization Methods in Geometric Design, Naukova Dumka, Kiev, 1986 | MR
[10] V. A. Trubin, “Effective algorithm for the Weber problem with a rectangular metric”, Cybern., 14:6 (1978), 874–878 | DOI | MR | Zbl
[11] Cheng L., Wong M. D. F., “Floorplan design for multi-million gate FPGAs”, Proc. 2004 IEEE/ACM Int. Conf. Comput.-Aided Des. (San Jose, CA, USA, Nov. 7–11, 2004), IEEE Comput. Soc., Washington, DC, 2004, 292–299 | DOI
[12] Cong J., Jagannathan A., Reinman G., Romesis M., “Microarchitecture evaluation with physical planning”, Proc. 40th Annu. Des. Autom. Conf. (Anaheim, USA, June 2–6, 2003), ACM, New York, 2003, 32–35
[13] Kahng A. B., “Classical floorplanning harmful?”, Proc. 2000 Int. Symp. Phys. Des. (San Diego, USA, Apr. 9–12, 2000), ACM, New York, 2000, 207–213
[14] Simmons D. M., “One-dimensional space allocation: an ordering algorithm”, Oper. Res., 17:5 (1969), 812–826 | DOI | MR | Zbl
[15] Suresh G., Sahu S., “Multiobjective facility layout using simulated annealing”, Int. J. Prod. Econ., 32:2 (1993), 239–254 | DOI