Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2015_22_6_a4, author = {N. Yu. Shereshik}, title = {Relaxations for the polyhedron of optimal schedules for the problem of interrupt-oriented service of jobs with a~single machine}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {78--90}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2015_22_6_a4/} }
TY - JOUR AU - N. Yu. Shereshik TI - Relaxations for the polyhedron of optimal schedules for the problem of interrupt-oriented service of jobs with a~single machine JO - Diskretnyj analiz i issledovanie operacij PY - 2015 SP - 78 EP - 90 VL - 22 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2015_22_6_a4/ LA - ru ID - DA_2015_22_6_a4 ER -
%0 Journal Article %A N. Yu. Shereshik %T Relaxations for the polyhedron of optimal schedules for the problem of interrupt-oriented service of jobs with a~single machine %J Diskretnyj analiz i issledovanie operacij %D 2015 %P 78-90 %V 22 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2015_22_6_a4/ %G ru %F DA_2015_22_6_a4
N. Yu. Shereshik. Relaxations for the polyhedron of optimal schedules for the problem of interrupt-oriented service of jobs with a~single machine. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 6, pp. 78-90. http://geodesic.mathdoc.fr/item/DA_2015_22_6_a4/
[1] Ph. Baptiste, J. Carlier, A. V. Kononov, M. Queyranne, S. V. Sevastyanov, M. I. Sviridenko, “Structural properties of optimal schedules with preemption”, J. Appl. Ind. Math., 4:4 (2010), 455–474 | DOI | MR | Zbl
[2] A. A. Lazarev, A. G. Kvaratskhelia, “Properties of optimal schedules for the minimization total weighted completion time in preemptive equal-length job with release dates scheduling problem on a single machine”, Autom. Remote Control, 71:10 (2010), 2085–2092 | DOI | MR | Zbl
[3] R. Yu. Simanchev, N. Yu. Shereshik, “Use of dichotomy scheme for minimum directive algorithm in various requirements satisfaction by single machine”, Vestn. Omsk. Univ., 2013, no. 2, 48–50
[4] R. Yu. Simanchev, N. Yu. Shereshik, “Integer models for the interrupt-oriented services of jobs by single machine”, Diskretn. Anal. Issled. Oper., 21:4 (2014), 89–101 | MR | Zbl
[5] Bouma W. H., Goldengorin B., “A polytime algorithm based on a primal LP model for scheduling problem $1|pmtn;p_i=2;r_i|\sum\omega_i C_i$”, Recent Advances in Applied Mathematics, Proc. Amer. Conf. Appl. Math. AMERICAN-MATH'10 (Cambridge, MA, Jan. 27–29, 2010), WSEAS Press, Athens, 2010, 415–420
[6] Brucker P., Knust S., Complexity results for scheduling problems, , Accessed Oct. 13, 2015 http://www.informatik.uni-osnabrueck.de/knust/class/