Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2015_22_6_a2, author = {T. I. Fedoryaeva}, title = {The diversity vector of balls of a~typical graph of small diameter}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {43--54}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2015_22_6_a2/} }
T. I. Fedoryaeva. The diversity vector of balls of a~typical graph of small diameter. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 6, pp. 43-54. http://geodesic.mathdoc.fr/item/DA_2015_22_6_a2/
[1] A. A. Evdokimov, “Locally isometric embeddings of graphs and the metric prolongation property”, Discrete Analysis and Operations Research, Math. Its Appl., 355, ed. A. D. Korshunov, Kluwer Acad. Publ., Dordrecht, 1996, 7–14 | MR | Zbl
[2] A. A. Evdokimov, “On an approach to the classification of graphs as metric spaces”, Abstr. XI Int. Conf. Probl. Theor. Cybern. (Ul'yanovsk, Russia, June 10–14, 1996), Izd. MGU, Moscow, 1996, 57–59
[3] A. A. Evdokimov, T. I. Fedoryaeva, “On the problem of characterizing the diversity vectors of balls”, J. Appl. Ind. Math., 8:2 (2014), 190–195 | DOI | MR | Zbl
[4] T. I. Fedoryaeva, “Operations and isometric embeddings of graphs related to the metric prolongation property”, Operations Research and Discrete Analysis, Math. Its Appl., 391, Kluwer Acad. Publ., Dordrecht, 1997, 31–49 | MR | Zbl
[5] T. I. Fedoryaeva, “Diversity of balls in the metric spaces of trees”, Diskretn. Anal. Issled. Oper., Ser. 1, 12:3 (2005), 74–84 | MR | Zbl
[6] T. I. Fedoryaeva, “Diversity vectors of balls in graphs and estimates of the components of the vectors”, J. Appl. Ind. Math., 2:3 (2008), 341–356 | DOI | MR | Zbl
[7] T. I. Fedoryaeva, “Exact upper estimates of the number of different balls of given radius for graphs with fixed number of vertices and diameter”, Diskretn. Anal. Issled. Oper., 16:6 (2009), 74–92 | MR | Zbl
[8] T. I. Fedoryaeva, “On the graphs with given diameter, number of vertices, and local diversity of balls”, J. Appl. Ind. Math., 5:1 (2011), 44–50 | DOI | MR | Zbl
[9] T. I. Fedoryaeva, “Majorants and minorants for the classes of graphs with fixed diameter and number of vertices”, J. Appl. Ind. Math., 7:2 (2013), 153–165 | DOI | MR | Zbl
[10] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, USA, 1969 | MR | MR | Zbl
[11] Bollobás B., Graph theory: an indroductory course, Springer-Verl., New York, 1979, 394 pp. | MR
[12] Tomescu I., “An asymptotic formula for the number of graphs having small diameter”, Discrete Math., 156:1–3 (1996), 219–228 | DOI | MR | Zbl