The diversity vector of balls of a~typical graph of small diameter
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 6, pp. 43-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

For ordinary connected graphs, the diversity vectors of balls ($i$th component of the vector is equal to the number of different balls of radius $i$) are studied asymptotically. The asymptotic behavior of the number of graphs of small diameter with full diversity of balls is investigated. The diversity vector of balls of a typical graph of the given small diameter is calculated. Asymptotically exact value of the number of labeled $n$-vertex graphs of diameter 3 is obtained. Ill. 2, bibliogr. 12.
Keywords: graph, metric ball, radius of ball, number of balls, diversity vector of balls, typical graph.
@article{DA_2015_22_6_a2,
     author = {T. I. Fedoryaeva},
     title = {The diversity vector of balls of a~typical graph of small diameter},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2015_22_6_a2/}
}
TY  - JOUR
AU  - T. I. Fedoryaeva
TI  - The diversity vector of balls of a~typical graph of small diameter
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2015
SP  - 43
EP  - 54
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2015_22_6_a2/
LA  - ru
ID  - DA_2015_22_6_a2
ER  - 
%0 Journal Article
%A T. I. Fedoryaeva
%T The diversity vector of balls of a~typical graph of small diameter
%J Diskretnyj analiz i issledovanie operacij
%D 2015
%P 43-54
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2015_22_6_a2/
%G ru
%F DA_2015_22_6_a2
T. I. Fedoryaeva. The diversity vector of balls of a~typical graph of small diameter. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 6, pp. 43-54. http://geodesic.mathdoc.fr/item/DA_2015_22_6_a2/

[1] A. A. Evdokimov, “Locally isometric embeddings of graphs and the metric prolongation property”, Discrete Analysis and Operations Research, Math. Its Appl., 355, ed. A. D. Korshunov, Kluwer Acad. Publ., Dordrecht, 1996, 7–14 | MR | Zbl

[2] A. A. Evdokimov, “On an approach to the classification of graphs as metric spaces”, Abstr. XI Int. Conf. Probl. Theor. Cybern. (Ul'yanovsk, Russia, June 10–14, 1996), Izd. MGU, Moscow, 1996, 57–59

[3] A. A. Evdokimov, T. I. Fedoryaeva, “On the problem of characterizing the diversity vectors of balls”, J. Appl. Ind. Math., 8:2 (2014), 190–195 | DOI | MR | Zbl

[4] T. I. Fedoryaeva, “Operations and isometric embeddings of graphs related to the metric prolongation property”, Operations Research and Discrete Analysis, Math. Its Appl., 391, Kluwer Acad. Publ., Dordrecht, 1997, 31–49 | MR | Zbl

[5] T. I. Fedoryaeva, “Diversity of balls in the metric spaces of trees”, Diskretn. Anal. Issled. Oper., Ser. 1, 12:3 (2005), 74–84 | MR | Zbl

[6] T. I. Fedoryaeva, “Diversity vectors of balls in graphs and estimates of the components of the vectors”, J. Appl. Ind. Math., 2:3 (2008), 341–356 | DOI | MR | Zbl

[7] T. I. Fedoryaeva, “Exact upper estimates of the number of different balls of given radius for graphs with fixed number of vertices and diameter”, Diskretn. Anal. Issled. Oper., 16:6 (2009), 74–92 | MR | Zbl

[8] T. I. Fedoryaeva, “On the graphs with given diameter, number of vertices, and local diversity of balls”, J. Appl. Ind. Math., 5:1 (2011), 44–50 | DOI | MR | Zbl

[9] T. I. Fedoryaeva, “Majorants and minorants for the classes of graphs with fixed diameter and number of vertices”, J. Appl. Ind. Math., 7:2 (2013), 153–165 | DOI | MR | Zbl

[10] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, USA, 1969 | MR | MR | Zbl

[11] Bollobás B., Graph theory: an indroductory course, Springer-Verl., New York, 1979, 394 pp. | MR

[12] Tomescu I., “An asymptotic formula for the number of graphs having small diameter”, Discrete Math., 156:1–3 (1996), 219–228 | DOI | MR | Zbl