Sufficient conditions for the minimal $\pi$-schemes for linear Boolean functions to be locally non-repeating
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 5, pp. 71-85

Voir la notice de l'article provenant de la source Math-Net.Ru

We formulate sufficient conditions for the minimal $\pi$-schemes for linear Boolean functions to be locally non-repeating. The validity of these conditions gives a description of the classes of all minimal $\pi$-schemes for linear Boolean functions which depend essentially on n variables. Ill. 2, bibliogr. 12.
Keywords: formula size, $\pi$-scheme, lower bound on the complexity.
@article{DA_2015_22_5_a3,
     author = {K. L. Rychkov},
     title = {Sufficient conditions for the minimal $\pi$-schemes for linear {Boolean} functions to be locally non-repeating},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {71--85},
     publisher = {mathdoc},
     volume = {22},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2015_22_5_a3/}
}
TY  - JOUR
AU  - K. L. Rychkov
TI  - Sufficient conditions for the minimal $\pi$-schemes for linear Boolean functions to be locally non-repeating
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2015
SP  - 71
EP  - 85
VL  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2015_22_5_a3/
LA  - ru
ID  - DA_2015_22_5_a3
ER  - 
%0 Journal Article
%A K. L. Rychkov
%T Sufficient conditions for the minimal $\pi$-schemes for linear Boolean functions to be locally non-repeating
%J Diskretnyj analiz i issledovanie operacij
%D 2015
%P 71-85
%V 22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2015_22_5_a3/
%G ru
%F DA_2015_22_5_a3
K. L. Rychkov. Sufficient conditions for the minimal $\pi$-schemes for linear Boolean functions to be locally non-repeating. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 5, pp. 71-85. http://geodesic.mathdoc.fr/item/DA_2015_22_5_a3/