The maximal flow problem on networks with special conditions of flow distribution
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 3, pp. 55-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of finding the maximal flow in nets with conditions of strict and nonstrict flow distribution. We show that for each condition of flow distribution the solution of the considered problem exists and is unique. The algorithms for finding the maximal flow are developed for each condition of flow distribution. We find bounds on the maximal flow value in the case of strict flow distribution. Ill. 3, tab. 4, bibliogr. 11.
Keywords: network, graph, maximal flow on network, flow distribution.
Mots-clés : graph algorithm
@article{DA_2015_22_3_a3,
     author = {V. A. Skorokhodov and A. S. Chebotareva},
     title = {The maximal flow problem on networks with special conditions of flow distribution},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {55--74},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2015_22_3_a3/}
}
TY  - JOUR
AU  - V. A. Skorokhodov
AU  - A. S. Chebotareva
TI  - The maximal flow problem on networks with special conditions of flow distribution
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2015
SP  - 55
EP  - 74
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2015_22_3_a3/
LA  - ru
ID  - DA_2015_22_3_a3
ER  - 
%0 Journal Article
%A V. A. Skorokhodov
%A A. S. Chebotareva
%T The maximal flow problem on networks with special conditions of flow distribution
%J Diskretnyj analiz i issledovanie operacij
%D 2015
%P 55-74
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2015_22_3_a3/
%G ru
%F DA_2015_22_3_a3
V. A. Skorokhodov; A. S. Chebotareva. The maximal flow problem on networks with special conditions of flow distribution. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 3, pp. 55-74. http://geodesic.mathdoc.fr/item/DA_2015_22_3_a3/

[1] A. I. Erzin, I. I. Takhonov, “The problem of the search for a balanced flow”, Sib. Zh. Ind. Mat., 9:4 (2006), 50–63 | MR | Zbl

[2] Ya. M. Erusalimsky, N. N. Vodolazov, “Unsteady flow in a network”, Vestn. Don. Gos. Tekh. Univ., 9:3 (2009), 402–409

[3] Ya. M. Erusalimsky, V. A. Skorokhodov, M. V. Kuzminova, A. G. Petrosyan, Graphs with Nonstandard Connectivity: Problems and Applications, Yuzh. Fed. Univ., Rostov-on-Don, 2009

[4] O. P. Kuznetsov, L. Yu. Zhilyakova, “Bidirectional resource networks: A new flow model”, Dokl. Math., 82:1 (2010), 643–646 | DOI | MR | Zbl

[5] A. G. Kurosh, Higher Algebra, Mir, Moscow, 1975 | MR | MR

[6] V. A. Skorokhodov, “Flows on graphs with varying transit times through the arcs”, Izv. VUZ. Sev.-Kavk. Reg., Ser. Estestv. Nauki, 2011, no. 1, 21–26 | MR

[7] V. A. Skorokhodov, “Flows in generalized nets with related arcs”, Model. Anal. Inf. Sist., 19:2 (2012), 41–52

[8] L. R. Ford, D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton, 1962 | MR | Zbl

[9] Ahuja R. K., Magnanti T. L., Orlin J. B., Network flows: theory, algorithms, and applications, Prentice-Hall Inc., Upper Saddle River, NJ, 1993, 864 pp. | MR | Zbl

[10] Fonoberova M., “On determining the minimum cost flows in dynamic networks”, Bul. Acad. Stiinte Repub. Moldova., Mat., 2006, no. 1, 51–56 | MR | Zbl

[11] Goldberg A. V., Rao S., “Beyond the flow decomposition barrier”, J. ACM, 45:5 (1998), 783–797 | DOI | MR | Zbl