Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2015_22_3_a1, author = {E. N. Gordeev}, title = {Comparison of three approaches to studing stability of solutions to discrete optimization and computational geometry problems}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {18--35}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2015_22_3_a1/} }
TY - JOUR AU - E. N. Gordeev TI - Comparison of three approaches to studing stability of solutions to discrete optimization and computational geometry problems JO - Diskretnyj analiz i issledovanie operacij PY - 2015 SP - 18 EP - 35 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2015_22_3_a1/ LA - ru ID - DA_2015_22_3_a1 ER -
%0 Journal Article %A E. N. Gordeev %T Comparison of three approaches to studing stability of solutions to discrete optimization and computational geometry problems %J Diskretnyj analiz i issledovanie operacij %D 2015 %P 18-35 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2015_22_3_a1/ %G ru %F DA_2015_22_3_a1
E. N. Gordeev. Comparison of three approaches to studing stability of solutions to discrete optimization and computational geometry problems. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 3, pp. 18-35. http://geodesic.mathdoc.fr/item/DA_2015_22_3_a1/
[1] V. B. Alyushkevich, Yu. N. Sotskov, “Stability in problems of scheduling”, Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauki, 1989, no. 3, 102–107
[2] V. I. Artemenko, E. N. Gordeev, Yu. I. Zhuravlev et al., “Construction of optimal programmed paths for the motion of a robotic manipulator”, Cybern. Syst. Anal., 32:5 (1996), 672–687 | DOI | MR | Zbl
[3] V. L. Beresnev, Location Discrete Problems and Polynomials of Boolean Variables, Inst. Mat. SO RAN, Novosibirsk, 2005
[4] M. N. Vyalyi, E. N. Gordeev, S. P. Tarasov, “On the stability of the Voronoi diagram”, Comput. Math. Math. Phys., 36:3 (1996), 405–414 | MR | Zbl
[5] E. N. Gordeev, “Algorithms of polynomial complexity for computing the radius of stability in two classes of trajectory problems”, USSR Comput. Math. Math. Phys., 27:4 (1987), 14–20 | DOI | MR | Zbl | Zbl
[6] E. N. Gordeev, “Stability of the solution in the problem of the shortest way on a graph”, Diskretn. Mat., 1:3 (1989), 39–46 | MR | Zbl
[7] E. N. Gordeev, “On solution stability in problems of computational geometry”, Abstracts of Int. Conf. “Intellectualization of Information Processing” (Alushta, Ukraine, June 3–7, 1996), Krym. Akad. Nauk, Simferopol, 1996, 8
[8] E. N. Gordeev, “Stability analysis of the minimum spanning tree problem in the metric $l_1$”, Comput. Math. Math. Phys., 39:5 (1999), 738–746 | MR | Zbl
[9] E. N. Gordeev, “Stability analysis in optimization problems on matroids in the metric $l_1$”, Cybern. Syst. Anal., 37:2 (2001), 251–259 | DOI | MR | Zbl
[10] E. N. Gordeev, “Using the stability radius of optimization problems to hiding and validation of information”, Inzhenernyi Zh.: Nauka i Innovatsii, 2013, no. 11, 14–19
[11] E. N. Gordeev, V. K. Leont'ev, “A general approach to the study of the stability of solutions in discrete optimization problems”, Comput. Math. Math. Phys., 36:1 (1996), 53–58 | MR | Zbl
[12] M. V. Devyaterikova, A. A. Kolokolov, N. A. Kosarev, “The analysis of the stability of some integer programming algorithms with respect to the objective function”, Russ. Math. (Izv. VUZ), 55:4 (2011), 18–25 | DOI | MR | Zbl
[13] V. A. Emelichev, V. V. Korotkov, “On the stability radius of an effective solution of the vector quadratic Boolean bottleneck problem”, Diskretn. Anal. Issled. Oper., 18:6 (2011), 3–16 | MR | Zbl
[14] V. A. Emelichev, V. V. Korotkov, “Stability analysis of a Pareto-optimal portfolio of the multicriteria investment problem with Wald maximin criteria”, Diskretn. Anal. Issled. Oper., 19:6 (2012), 23–36 | MR | Zbl
[15] A. A. Kolokolov, M. V. Devyaterikova, “Stability analysis for $L$-partitions in a finite-dimensional space”, Diskretn. Anal. Issled. Oper., Ser. 2, 7:2 (2000), 47–53 | MR | Zbl
[16] V. K. Leont'ev, “Stability in linear discrete problems”, Problems of Cybernetics, 35, ed. S. V. Yablonskii, Nauka, Moscow, 1979, 169–185 | MR
[17] V. K. Leont'ev, E. N. Gordeev, “Qualitative analysis of trajectory problems”, Kibernetika, 1986, no. 5, 82–90 | MR
[18] Cheng E., Cunningham W. H., “A faster algorithm for computing the strength of a network”, Inf. Process. Lett., 49 (1994), 209–212 | DOI | Zbl
[19] Cunningham W. H., “Testing membership in matroid polyhedra”, J. Comb. Theory. Ser. B, 36 (1984), 161–188 | DOI | MR | Zbl
[20] Fredericson G. N., Solis-Oba R., “Increasing the weight of minimum spanning trees”, Proc. 7th Ann. ACM-SIAM Symp. Discrete Algorithms, SIAM, Philadelphia, PA, 1996, 539–546 | MR
[21] Fredericson G. N., Solis-Oba R., “Efficient algorithms for robustness in matroid optimization”, Proc. 8th Ann. ACM-SIAM Symp. Discrete Algorithms, SIAM, Philadelphia, PA, 1997, 659–668 | MR
[22] Gallo G., Grigoriadis M. D., Tarjan R. E., “A fast parametric maximum flow algorithm and application”, SIAM J. Comput., 18:1 (1989), 30–55 | DOI | MR | Zbl
[23] Narayanan H., “A rounding technique for the polymatroid problem”, Linear Algebra Appl., 221 (1995), 41–57 | DOI | MR | Zbl
[24] Sotskov Yu. N., Leont'ev V. K., Gordeev E. N., “Some concepts of stability analysis in combinatorial optimization”, Discrete Appl. Math., 58 (1985), 169–190 | DOI | MR
[25] Tarjan R. E., “Sensitivity analysis of minimum spanning trees and shortest paths trees”, Inf. Process. Lett., 14:1 (1982), 30–33 | DOI | MR