Counting sumsets and differences in abelian group
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 2, pp. 73-85
Cet article a éte moissonné depuis la source Math-Net.Ru
A subset $A$ of a group $G$ is called $(k,l)$-sumset, if $A=kB-lB$ for some $B\subseteq G$, where $kB-lB=\{x_1+\dots+x_k-x_{k+1}-\dots-x_{k+l}\mid x_1,\dots,x_{k+l}\in B\}$. Upper and lower bounds for the numbers of $(1,1)$-sumsets and $(2,0)$-sumsets in abelian groups are provided. Bibliogr. 4.
Keywords:
arithmetic progression, characteristic function, coset.
Mots-clés : group
Mots-clés : group
@article{DA_2015_22_2_a5,
author = {V. G. Sargsyan},
title = {Counting sumsets and differences in abelian group},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {73--85},
year = {2015},
volume = {22},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2015_22_2_a5/}
}
V. G. Sargsyan. Counting sumsets and differences in abelian group. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 2, pp. 73-85. http://geodesic.mathdoc.fr/item/DA_2015_22_2_a5/
[1] Sapozhenko A. A., “Solution of the Cameron–Erdös problem for groups of prime order”, Comput. Math. Math. Phys., 49:8 (2009), 1435–1441 | DOI | Zbl
[2] Sargsyan V. G., “The number of differences in groups of prime order”, Discrete Math. Appl., 23:2 (2013), 195–201 | DOI | DOI | MR
[3] Green B., Ruzsa I. Z., “Counting sumsets and sum-free sets modulo a prime”, Stud. Sci. Math. Hung., 41 (2004), 285–293
[4] Green B., Ruzsa I. Z., “Sum-free sets in abelian groups”, Isr. J. Math., 147 (2005), 157–188 | DOI