On complexity of solving systems of functional equations in countable-valued logic
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 2, pp. 49-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a procedure to construct all solutions of an arbitrary system of functional equations in countable-valued logic. Based on this procedure, the solutions of systems of equations in the class $\Sigma_2$ of Kleene–Mostovsky arithmetical hierarchy which include only the ternary discriminator $p$ are determined. We prove that for given systems of equations the components of solutions may be arbitrary functions of the class $\Sigma^1_1$ of Kleene analytical hierarchy. Bibliogr. 10.
Keywords: system of functional equations, function of countable-valued logic.
@article{DA_2015_22_2_a3,
     author = {S. S. Marchenkov},
     title = {On complexity of solving systems of functional equations in countable-valued logic},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {49--62},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2015_22_2_a3/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - On complexity of solving systems of functional equations in countable-valued logic
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2015
SP  - 49
EP  - 62
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2015_22_2_a3/
LA  - ru
ID  - DA_2015_22_2_a3
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T On complexity of solving systems of functional equations in countable-valued logic
%J Diskretnyj analiz i issledovanie operacij
%D 2015
%P 49-62
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2015_22_2_a3/
%G ru
%F DA_2015_22_2_a3
S. S. Marchenkov. On complexity of solving systems of functional equations in countable-valued logic. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 2, pp. 49-62. http://geodesic.mathdoc.fr/item/DA_2015_22_2_a3/

[1] S. S. Marchenkov, “Homogeneous algebras”, Problems of Cybernetics, 39, ed. S. V. Yablonskii, Nauka, Moscow, 1982, 85–106 | MR | Zbl

[2] Marchenkov S. S., “The closure operator in a multivalued logic based on functional equations”, J. Appl. Ind. Math., 5:3 (2011), 383–390 | DOI | MR | Zbl

[3] S. S. Marchenkov, “On classifications of many-valued logic functions by means of automorphism groups”, Diskretn. Anal. Issled. Oper., 18:4 (2011), 66–76 | MR | Zbl

[4] Marchenkov S. S., “FE-classification of functions of many-valued logic”, Mosc. Univ. Comput. Math. Cybern., 35:2 (2011), 89–96 | DOI | MR | Zbl

[5] Marchenkov S. S., “Definability in the language of functional equations of a countable-valued logic”, Discrete Math. Appl., 23:5–6 (2013), 451–462 | DOI | MR

[6] Marchenkov S. S., Kalinina I. S., “The FE-closure operator in countable-valued logic”, Mosc. Univ. Comput. Math. Cybern., 37:3 (2013), 131–136 | DOI | MR | Zbl

[7] Marchenkov S. S., Fedorova V. S., “On solutions to the systems of functional Boolean equations”, J. Appl. Ind. Math., 3:4 (2009), 476–481 | DOI | MR | MR | Zbl

[8] Marchenkov S. S., Fedorova V. S., “On solutions to systems of functional equations of multiple-valued logic”, Dokl. Math., 79:3 (2009), 382–383 | DOI | MR | Zbl

[9] Marchenkov S. S., Fedorova V. S., “Solutions to the systems of functional equations of multivalued logic”, Mosc. Univ. Comput. Math. Cybern., 33:4 (2009), 197–201 | DOI | MR | Zbl

[10] Rogers H., Theory of Recursive Functions and Effective Computability, McGrow-Hill Book Co., New York, 1967 | MR | MR | Zbl