On coloring problems for the two-season multigraphs
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 2, pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is supposed that there are two moments of time called seasons in which a multigraph can have various sets of edges. Such multigraphs are called two-season. In coloring vertices or edges every object is colored in one season. Some bounds on two-season chromatic number are given and the exact algorithm for the minimal edge coloring of a bipartite two-season multigraph is presented. Bibliogr. 3.
Keywords: two-season multigraph, two-season coloring.
@article{DA_2015_22_2_a1,
     author = {V. G. Vizing},
     title = {On coloring problems for the two-season multigraphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {17--26},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2015_22_2_a1/}
}
TY  - JOUR
AU  - V. G. Vizing
TI  - On coloring problems for the two-season multigraphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2015
SP  - 17
EP  - 26
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2015_22_2_a1/
LA  - ru
ID  - DA_2015_22_2_a1
ER  - 
%0 Journal Article
%A V. G. Vizing
%T On coloring problems for the two-season multigraphs
%J Diskretnyj analiz i issledovanie operacij
%D 2015
%P 17-26
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2015_22_2_a1/
%G ru
%F DA_2015_22_2_a1
V. G. Vizing. On coloring problems for the two-season multigraphs. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 2, pp. 17-26. http://geodesic.mathdoc.fr/item/DA_2015_22_2_a1/

[1] V. G. Vizing, “On bases of vertices of a two-season directed graph”, Reports of Odessa Seminar on Discrete Mathematics, 15, Astroprint, Odessa, 2014, 13–16

[2] Garey M. R., Johnson D. S., Stockmeyer I. J., “Some simplified NP-complete graph problems”, Theoret. Comput. Sci., 1:3 (1976), 337–367 | DOI | MR

[3] König D., “Über Graphen und ihre Anvendung auf Determinantentheorie und Mengenlehre”, Math. Ann., 77 (1916), 453–465 | DOI | MR | Zbl