On stability of solutions of a~vector variant of one investment problem
Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 2, pp. 5-16

Voir la notice de l'article provenant de la source Math-Net.Ru

The vector Boolean problem of portfolio optimization with extreme optimism criteria and Pareto optimality principle is considered. Upper and lower bounds of stability radius are given with an arbitrary Hölder metric in the space of investment projects and in the space of factors of projects economical efficiency and with the Chebyshev metric in the space of financial market states. Bibliogr. 10.
Keywords: vector investment problem, extreme optimism criteria, Pareto set, stability radius of a problem, Hölder norm, Chebyshev norm.
@article{DA_2015_22_2_a0,
     author = {S. E. Bukhtoyarov and V. A. Emelichev},
     title = {On stability of solutions of a~vector variant of one investment problem},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2015_22_2_a0/}
}
TY  - JOUR
AU  - S. E. Bukhtoyarov
AU  - V. A. Emelichev
TI  - On stability of solutions of a~vector variant of one investment problem
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2015
SP  - 5
EP  - 16
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2015_22_2_a0/
LA  - ru
ID  - DA_2015_22_2_a0
ER  - 
%0 Journal Article
%A S. E. Bukhtoyarov
%A V. A. Emelichev
%T On stability of solutions of a~vector variant of one investment problem
%J Diskretnyj analiz i issledovanie operacij
%D 2015
%P 5-16
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2015_22_2_a0/
%G ru
%F DA_2015_22_2_a0
S. E. Bukhtoyarov; V. A. Emelichev. On stability of solutions of a~vector variant of one investment problem. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 2, pp. 5-16. http://geodesic.mathdoc.fr/item/DA_2015_22_2_a0/