Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2015_22_1_a5, author = {I. M. Khuziev}, title = {About searching for antipodal vertexes in symmetric {Cayley} graphs}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {86--99}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2015_22_1_a5/} }
I. M. Khuziev. About searching for antipodal vertexes in symmetric Cayley graphs. Diskretnyj analiz i issledovanie operacij, Tome 22 (2015) no. 1, pp. 86-99. http://geodesic.mathdoc.fr/item/DA_2015_22_1_a5/
[1] V. Yu. Krasin, “On the weak isometries of the Boolean cube”, J. Appl. Ind. Math., 1:4 (2007), 463–467 | DOI | MR | Zbl
[2] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[3] Childs A. M., Cleve R., Deotto E., Farhi E., Gutmann S., Spielman D. A., “Exponential algorithmic speedup by quantum walk”, Proc. 35th ACM Symp. Theory of Computing, STOC 2003 (San Diego, CA, USA, June 9–11, 2003), ACM, New York, 2003, 59–68 | MR | Zbl
[4] Kempe J., “Discrete quantum walks hit exponentially faster”, Proc. 7th Int. Workshop Randomization and Approximation Techniques in Computer Science, RANDOM'03 (Princeton, NJ, USA, Aug. 24–26, 2003), Lect. Notes Comput. Sci., 2764, eds. S. Arora, K. Jansen, J. D. P. Rolim, A. Sahai, Springer-Verl., Berlin, 2003, 354–369 | DOI | MR | Zbl
[5] Khuziev I., Quantum walk in symmetric Cayley graph over $\mathbb Z_2^n$, Cornell Univ. Libr. e-Print Archive, 2013, arXiv: 1305.6849