Evolutionary-fragmentary model of pentamino packing
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 6, pp. 35-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of packing pentamino in flat containers of arbitrary shape. The definition of the fragmentary structure is introduced. We show that the problem of packing pentaminoes can be represented as a problem with the fragmentary structure. An evolutionary model for finding optimal pentamino packages is proposed. Ill. 4, tab. 1, bibliogr. 16.
Keywords: packing pentamino, fragmentary structure, evolutionary-fragmentary model, evolutionary algorithm.
@article{DA_2014_21_6_a3,
     author = {I. V. Kozin and S. I. Polyuga},
     title = {Evolutionary-fragmentary model of pentamino packing},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {35--50},
     publisher = {mathdoc},
     volume = {21},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_6_a3/}
}
TY  - JOUR
AU  - I. V. Kozin
AU  - S. I. Polyuga
TI  - Evolutionary-fragmentary model of pentamino packing
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 35
EP  - 50
VL  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_6_a3/
LA  - ru
ID  - DA_2014_21_6_a3
ER  - 
%0 Journal Article
%A I. V. Kozin
%A S. I. Polyuga
%T Evolutionary-fragmentary model of pentamino packing
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 35-50
%V 21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_6_a3/
%G ru
%F DA_2014_21_6_a3
I. V. Kozin; S. I. Polyuga. Evolutionary-fragmentary model of pentamino packing. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 6, pp. 35-50. http://geodesic.mathdoc.fr/item/DA_2014_21_6_a3/

[1] Golomb S. V., Polimino, Mir, M., 1975, 207 pp. | Zbl

[2] Geri M. R., Dzhonson D. S., Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982, 416 pp. | MR

[3] Emelyanov V. V., Kureichik V. V., Kureichik V. M., Teoriya i praktika evolyutsionnogo modelirovaniya, Fizmatlit, M., 2003, 432 pp.

[4] Ilev V. P., “Zadachi na sistemakh nezavisimosti, razreshimye zhadnym algoritmom”, Diskret. matematika, 21:4 (2009), 85–94 | DOI | MR

[5] Kozin I. V., “Fragmentarnye algoritmy v sistemakh podderzhki prinyatiya reshenii”, Pitannya prikladnoï matematiki i matematichnogo modelyuvannya, Dnepropetrovsk, 2006, 131–137

[6] Kozin I. V., Polyuga S. I., “O svoistvakh fragmentarnykh struktur”, Visnik Zaporizkogo natsionalnogo universitetu. Matematichne modelyuvannya i prikladna mekhanika, 2012, no. 1, 99–106 | MR

[7] Kozin I. V., Polyuga S. I., “Ispolzovanie EVF-algoritmov dlya zadachi pryamougolnogo raskroya”, Pitannya prikladnoï matematiki i matematichnogo modelyuvannya, Dnepropetrovsk, 2009, 199–208

[8] Mukhacheva A. S., Chiglintsev A. V., “Geneticheskii algoritm poiska minimuma v zadachakh dvumernogo gilotinnogo raskroya”, Inform. tekhnologii. Mashinostroenie, 2001, no. 3, 27–32

[9] Skoptsov Yu. O., Osnovy evolyutsionnykh vychislenii, Ucheb. posob., DonNTU, Donetsk, 2008, 326 pp.

[10] Stoyan Yu. G., Yakovlev S. V., Matematicheskie modeli i optimizatsionnye metody geometricheskogo proektirovaniya, Nauk. dumka, Kiev, 1986, 266 pp. | MR

[11] Bjorner A., Ziegle G. M., Introduction to greedoids, Cambridge, Cambridge Univ. Press, 1992, 180 pp. | MR

[12] Chambers L., Practical handbook of genetic algorithms, v. 1, Applications, CRC Press, 2001, 544 pp.

[13] Holland J. H., Adaptation in natural and artificial systems, MIT Press, Boston, 1992, 217 pp. | MR

[14] Fletcher J. G., “A program to solve the pentomino problem by the recursive use of macros”, Commun. ACM, 8:10 (1965), 621–623 | DOI | MR

[15] White N., Theory of matroids, Encyclopedia of mathematics and its applications, 26, Cambridge Univ. Press, Cambridge, 1986, 153 pp. | MR | Zbl

[16] Whitney H., “On the abstract properties of linear dependence”, Amer. J. Math., 57:3 (1935), 509–533 | DOI | MR | Zbl