Enumeration of labeled Eulerian tetracyclic graphs
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 5, pp. 17-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce the exact and asymptotical formulas for the number of labeled Eulerian tetracyclic graphs. Ill. 1, tab. 1, bibliogr. 11.
Keywords: enumeration, labeled graph, Eulerian graph, tetracyclic graph, asymptotics.
@article{DA_2014_21_5_a1,
     author = {V. A. Voblyi and A. K. Meleshko},
     title = {Enumeration of labeled {Eulerian} tetracyclic graphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_5_a1/}
}
TY  - JOUR
AU  - V. A. Voblyi
AU  - A. K. Meleshko
TI  - Enumeration of labeled Eulerian tetracyclic graphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 17
EP  - 22
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_5_a1/
LA  - ru
ID  - DA_2014_21_5_a1
ER  - 
%0 Journal Article
%A V. A. Voblyi
%A A. K. Meleshko
%T Enumeration of labeled Eulerian tetracyclic graphs
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 17-22
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_5_a1/
%G ru
%F DA_2014_21_5_a1
V. A. Voblyi; A. K. Meleshko. Enumeration of labeled Eulerian tetracyclic graphs. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 5, pp. 17-22. http://geodesic.mathdoc.fr/item/DA_2014_21_5_a1/

[1] Voblyi V. A., “Perechislenie pomechennykh svyaznykh bitsiklicheskikh i tritsiklicheskikh eilerovykh grafov”, Mat. zametki, 92:5 (2012), 678–683 | DOI | MR | Zbl

[2] Voblyi V. A., Meleshko A. K., “Perechislenie pomechennykh tetratsiklicheskikh eilerovykh blokov”, Mat. XVII Mezhdunar. konf. “Problemy teoreticheskoi kibernetiki” (Kazan, 16–20 iyunya 2014 g.), Otechestvo, Kazan, 2014, 60–62

[3] Voblyi V. A., Meleshko A. K., “Perechislenie pomechennykh grafov rozy”, Mat. XVI Mezhvuz. seminara “Kombinatornye konfiguratsii i ikh prilozheniya” (Kirovograd, 11–12 aprelya 2014 g.), Kirovogradskii nats. tekhn. universitet, Kirovograd, 2014, 27–29

[4] Dmitriev E. F., Perechislenie otmechennykh grafov s dannymi strukturnymi svoistvami, Dis. $\dots$ kand. fiz.-mat. nauk: 01.01.09, In-t matematiki AN BSSR, Minsk, 1986, 130 pp.

[5] Prudnikov A. P. i dr., Integraly i ryady, v. 1, Nauka, M., 1981, 800 pp. | MR | Zbl

[6] Stepanov V. E., “O nekotorykh osobennostyakh stroeniya sluchainogo grafa vblizi kriticheskoi tochki”, Teoriya veroyatnosti i eë primeneniya, 32:4 (1987), 633–657 | MR | Zbl

[7] Kharari F., Teoriya grafov, Mir, M., 1973, 302 pp. | MR

[8] Ford G. W., Uhlenbeck G. E., “Combinatorial problems in theory graphs. IV”, Proc. Nat. Acad. Sci. USA, 43 (1957), 163–167 | DOI | MR

[9] Heap B. R., “Enumeration homeomorphically irreducible star graphs”, J. Math. Phys., 7:7 (1966), 1582–1587 | DOI | MR | Zbl

[10] Read R. C., “Euler graphs on labelled nodes”, Can. J. Math., 14 (1962), 482–486 | DOI | MR | Zbl

[11] Tazawa S., “Enumeration of labelled 2-connected Euler graphs”, J. Combin. Inf. Syst. Sci., 23:1–4 (1998), 407–414 | MR | Zbl