Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2014_21_4_a6, author = {A. A. Mel'nikov}, title = {Computational complexity of the discrete competitive facility location problem}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {62--79}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2014_21_4_a6/} }
TY - JOUR AU - A. A. Mel'nikov TI - Computational complexity of the discrete competitive facility location problem JO - Diskretnyj analiz i issledovanie operacij PY - 2014 SP - 62 EP - 79 VL - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2014_21_4_a6/ LA - ru ID - DA_2014_21_4_a6 ER -
A. A. Mel'nikov. Computational complexity of the discrete competitive facility location problem. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 4, pp. 62-79. http://geodesic.mathdoc.fr/item/DA_2014_21_4_a6/
[1] Beresnev V. L., “Upper bounds for objective functions of discrete competitive facility location problems”, J. Appl. Industr. Math., 3:4 (2009), 419–432 | DOI | MR | Zbl
[2] Beresnev V. L., “Local search algorithms for the problem of competitive location of enterprises”, Autom. Remote Control, 73:3 (2012), 425–439 | DOI | MR
[3] Beresnev V. L., Goncharov E. N., Mel'nikov A. A., “Local search with a generalized neighborhood in the optimization problem for pseudo-Boolean functions”, J. Appl. Industr. Math., 6:1 (2012), 22–30 | DOI | MR | Zbl
[4] Beresnev V. L., Melnikov A. A., “Approximate algorithms for the competitive facility location problems”, J. Appl. Industr. Math., 5:2 (2011), 180–190 | DOI | MR | Zbl
[5] Vasil'ev I. L., Klimentova K. B., “The branch and cut method for the facility location problem with clients' preferences”, J. Appl. Industr. Math., 4:3 (2010), 441–454 | DOI | MR | Zbl
[6] Vasil'ev I. L., Klimentova K. B., Kochetov Yu. A., “New lower bounds for the facility location problem with clients' preferences”, Comput. Math. Math. Phys., 49:6 (2009), 1010–1020 | DOI | MR | Zbl
[7] Germeier Yu. B., Igry s neprotivopolozhnymi interesami, Nauka, M., 1976, 328 pp. | MR
[8] Kononov A. V., Kochetov Yu. A., Plyasunov A. V., “Competitive facility location models”, Comput. Math. Math. Phys., 49:6 (2009), 994–1009 | DOI | MR | Zbl
[9] Beresnev V., “Branch-and-bound algorithm for competitive facility location problem”, Comput. Oper. Res., 40 (2013), 2062–2070 | DOI | MR
[10] Canovas L., Garcia S., Labbe M., Marin A., “A strengthened formulation for the simple plant location problem with order”, Oper. Res. Lett., 35 (2007), 141–150 | DOI | MR | Zbl
[11] Davydov I., Kochetov Yu., Plyasunov A., “On the complexity of the ($r|p$)-centroid problem in the plane”, TOP, 22:2 (2014), 614–623 | DOI
[12] Dempe S., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002, 332 pp. | MR | Zbl
[13] Garey M. R., Johnson D. S., Computers and intractability: a guide to the theory of NP-completeness, W. H. Freeman Co., San Francisco, 1979, 338 pp. | MR | Zbl
[14] Krarup J., Pruzan P. M., “The simple plant location problem: survey and synthesis”, Eur. J. Oper. Res., 12 (1983), 36–81 | DOI | MR | Zbl
[15] Stackelberg H., The theory of the market economy, Oxford Univ. Press, Oxford, 1952, 289 pp.
[16] Stockmeyer L. J., “The polynomial-time hierarchy”, Theor. Comput. Sci., 3 (1976), 1–22 | DOI | MR