Discrete dynamical systems with threshold functions at the vertices
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 4, pp. 25-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an algorithm for finding all fixed points of a discrete dynamical system of the сirculant type with an arbitrary Boolean function at the vertices. We obtain the description of the origins and fixed points for the system with a Boolean function $f$ of $k$ variables with a single set $\widetilde v$, such that $f(\widetilde v)=1$, at the vertices. Ill. 1, tab. 2, bibliogr. 8.
Keywords: discrete dynamical system, gene network, functional graph.
Mots-clés : circulant
@article{DA_2014_21_4_a2,
     author = {Ts. Ch.-D. Batueva},
     title = {Discrete dynamical systems with threshold functions at the vertices},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {25--32},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_4_a2/}
}
TY  - JOUR
AU  - Ts. Ch.-D. Batueva
TI  - Discrete dynamical systems with threshold functions at the vertices
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 25
EP  - 32
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_4_a2/
LA  - ru
ID  - DA_2014_21_4_a2
ER  - 
%0 Journal Article
%A Ts. Ch.-D. Batueva
%T Discrete dynamical systems with threshold functions at the vertices
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 25-32
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_4_a2/
%G ru
%F DA_2014_21_4_a2
Ts. Ch.-D. Batueva. Discrete dynamical systems with threshold functions at the vertices. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 4, pp. 25-32. http://geodesic.mathdoc.fr/item/DA_2014_21_4_a2/

[1] Batueva Ts. Ch.-D., “Svoistva gennykh setei tsirkulyantnogo tipa s porogovymi funktsiyami”, Prikl. diskret. matematika. Pril., 2013, no. 6, 72–73

[2] Gavrilov G. P., Sapozhenko A. A., Zadachi i uprazhneniya po diskretnoi matematike, Fizmatlit, M., 2009, 416 pp.

[3] Grigorenko E. D., Evdokimov A. A., Likhoshvai V. A., Lobareva I. A., “Nepodvizhnye tochki i tsikly avtomatnykh otobrazhenii, modeliruyuschikh funktsionirovanie gennykh setei”, Vestn. Tomsk. gos. un-ta, 2005, no. 14, 206–212

[4] Demidenko G. V., Kolchanov N. A., Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I., “Matematicheskoe modelirovanie regulyarnykh konturov gennykh setei”, Zhurn. vychisl. matematiki i mat. fiziki, 44:12 (2004), 2276–2295 | MR | Zbl

[5] Evdokimov A. A., Likhovidova E. O., “Diskretnaya model gennoi seti tsirkulyantnogo tipa s porogovymi funktsiyami”, Vestn. Tomsk. gos. un-ta, 2008, no. 2, 18–21

[6] Evdokimov A. A., Perezhogin A. L., “Discrete dynamical systems of a circulant type with linear functions at vertices of network”, J. Appl. Industr. Math., 6:2 (2012), 160–166 | DOI | MR | Zbl

[7] Likhoshvai V. A., Golubyatnikov V. P., Demidenko G. V., Evdokimov A. A., Matveeva I. I., Fadeev S. I., “Teoriya gennykh setei”, Sistemnaya kompyuternaya biologiya, Izd-vo SO RAN, Novosibirsk, 2008, 397–480

[8] Evdokimov A. A., Kutumova E. O., “The discrete model of the gene networks regulatory loops with the threshold functions”, Proc. 7th Int. Conf. Bioinformatics of Genom Regulation and Structure (Novosibirsk, June 20–27, 2010), SB RAS, Novosibirsk, 2010, 155