Finding the distance between the ellipsoids
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 3, pp. 87-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding the nearest points between two ellipsoids is considered. New algorithms for solving this problem were constructed using the theory of exact penalty functions and nonsmooth analysis. We propose two iterative methods of (steepest and hypodifferential) descent. New algorithms (as compared with previously known) have specific advantages, in particular, they are universal and less labor-intensive. The software which implements these algorithms was developed in MATLAB and Maple environment. Bibliogr. 12.
Keywords: nonsmooth analysis, nearest distance, ellipsoid, exact penalty, subdifferential, method of hypodifferential descent.
@article{DA_2014_21_3_a9,
     author = {G. Sh. Tamasyan and A. A. Chumakov},
     title = {Finding the distance between the ellipsoids},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {87--102},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_3_a9/}
}
TY  - JOUR
AU  - G. Sh. Tamasyan
AU  - A. A. Chumakov
TI  - Finding the distance between the ellipsoids
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 87
EP  - 102
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_3_a9/
LA  - ru
ID  - DA_2014_21_3_a9
ER  - 
%0 Journal Article
%A G. Sh. Tamasyan
%A A. A. Chumakov
%T Finding the distance between the ellipsoids
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 87-102
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_3_a9/
%G ru
%F DA_2014_21_3_a9
G. Sh. Tamasyan; A. A. Chumakov. Finding the distance between the ellipsoids. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 3, pp. 87-102. http://geodesic.mathdoc.fr/item/DA_2014_21_3_a9/

[1] Demyanov V. F., “Tochnye shtrafnye funktsii v zadachakh negladkoi optimizatsii”, Vestn. SPbGU. Ser. 1, 1994, no. 4(22), 21–27 | MR

[2] Demyanov V. F., Usloviya ekstremuma i variatsionnoe ischislenie, Vysshaya shkola, M., 2005, 335 pp.

[3] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR

[4] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1990, 432 pp. | MR

[5] Erëmin I. I., “Metod “shtrafov” v vypuklom programmirovanii”, Dokl. AN SSSR, 143:4 (1967), 748–751 | MR

[6] Kalinina E. A., Uteshev A. Yu., Teoriya isklyucheniya, Uchebnoe posobie, NII Khimii SPbGU, SPb., 2002, 72 pp.

[7] Kosolap A. I., “Kvadratichnye optimizatsionnye zadachi kompyutenoi geometrii”, Iskusstvennyi intellekt, 2010, no. 1, 70–75

[8] Lebedev D. M., Polyakova L. N., “Zadacha proektirovaniya nulevoi tochki na kvadrik”, Vestn. SPbGU. Ser. 10, 2013, no. 1, 11–17

[9] Tamasyan G. Sh., “O metodakh naiskoreishego i gipodifferentsialnogo spuska v odnoi zadache variatsionnogo ischisleniya”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 13, 2012, 197–217

[10] Uteshev A. Yu., Vychislenie rasstoyanii mezhdu geometricheskimi ob'ektami, http://pmpu.ru/vf4/algebra2/optimiz/distance

[11] Uteshev A. Yu., Yashina M. V., “Nakhozhdenie rasstoyaniya ot ellipsoida do ploskosti i kvadriki v $\mathbb R^n$”, Dokl. AN, 419:4 (2008), 471–474 | MR | Zbl

[12] Lin A., Han S. P., “On the distance between two ellipsoids”, SIAM J. Optim., 13 (2002), 298–308 | DOI | MR | Zbl