Polytopes and connected subgraphs
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 3, pp. 82-86

Voir la notice de l'article provenant de la source Math-Net.Ru

The edges of the linear relaxation polytopes for quadratic Boolean programming problems are described. We found correspondence between the edges of such a polytope and connected subgraphs of the complete graph. Tab. 1, bibliogr. 14.
Keywords: combinatorial optimization, polyhedral cone, polytope, subgraph.
@article{DA_2014_21_3_a8,
     author = {A. V. Seliverstov},
     title = {Polytopes and connected subgraphs},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {82--86},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_3_a8/}
}
TY  - JOUR
AU  - A. V. Seliverstov
TI  - Polytopes and connected subgraphs
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 82
EP  - 86
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_3_a8/
LA  - ru
ID  - DA_2014_21_3_a8
ER  - 
%0 Journal Article
%A A. V. Seliverstov
%T Polytopes and connected subgraphs
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 82-86
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_3_a8/
%G ru
%F DA_2014_21_3_a8
A. V. Seliverstov. Polytopes and connected subgraphs. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 3, pp. 82-86. http://geodesic.mathdoc.fr/item/DA_2014_21_3_a8/