Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2014_21_2_a4, author = {Yu. V. Merekin}, title = {The {Shannon} function for calculating the {Arnold} complexity of length $2^n$ binary words for arbitrary~$n$}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {59--75}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2014_21_2_a4/} }
TY - JOUR AU - Yu. V. Merekin TI - The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary~$n$ JO - Diskretnyj analiz i issledovanie operacij PY - 2014 SP - 59 EP - 75 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2014_21_2_a4/ LA - ru ID - DA_2014_21_2_a4 ER -
%0 Journal Article %A Yu. V. Merekin %T The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary~$n$ %J Diskretnyj analiz i issledovanie operacij %D 2014 %P 59-75 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2014_21_2_a4/ %G ru %F DA_2014_21_2_a4
Yu. V. Merekin. The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary~$n$. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 59-75. http://geodesic.mathdoc.fr/item/DA_2014_21_2_a4/