The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary~$n$
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 59-75

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact value of the Shannon function for fast calculating the Arnold complexity of length $2^n$ binary words is obtained for $n=m^2$, $n=m^2+m$, and $n=m^2+2m$, $m\geq2$. Thus the exact value of the Shannon function is determined for an arbitrary $n$. Bibliogr. 6.
Keywords: binary word, complexity of word, Arnold complexity, Shannon function.
@article{DA_2014_21_2_a4,
     author = {Yu. V. Merekin},
     title = {The {Shannon} function for calculating the {Arnold} complexity of length $2^n$ binary words for arbitrary~$n$},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {59--75},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_2_a4/}
}
TY  - JOUR
AU  - Yu. V. Merekin
TI  - The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary~$n$
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 59
EP  - 75
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_2_a4/
LA  - ru
ID  - DA_2014_21_2_a4
ER  - 
%0 Journal Article
%A Yu. V. Merekin
%T The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary~$n$
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 59-75
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_2_a4/
%G ru
%F DA_2014_21_2_a4
Yu. V. Merekin. The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary~$n$. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 59-75. http://geodesic.mathdoc.fr/item/DA_2014_21_2_a4/