The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary~$n$
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 59-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact value of the Shannon function for fast calculating the Arnold complexity of length $2^n$ binary words is obtained for $n=m^2$, $n=m^2+m$, and $n=m^2+2m$, $m\geq2$. Thus the exact value of the Shannon function is determined for an arbitrary $n$. Bibliogr. 6.
Keywords: binary word, complexity of word, Arnold complexity, Shannon function.
@article{DA_2014_21_2_a4,
     author = {Yu. V. Merekin},
     title = {The {Shannon} function for calculating the {Arnold} complexity of length $2^n$ binary words for arbitrary~$n$},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {59--75},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_2_a4/}
}
TY  - JOUR
AU  - Yu. V. Merekin
TI  - The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary~$n$
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 59
EP  - 75
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_2_a4/
LA  - ru
ID  - DA_2014_21_2_a4
ER  - 
%0 Journal Article
%A Yu. V. Merekin
%T The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary~$n$
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 59-75
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_2_a4/
%G ru
%F DA_2014_21_2_a4
Yu. V. Merekin. The Shannon function for calculating the Arnold complexity of length $2^n$ binary words for arbitrary~$n$. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 59-75. http://geodesic.mathdoc.fr/item/DA_2014_21_2_a4/

[1] Arnold V. I., “Topologiya i statistika formul arifmetiki”, Uspekhi mat. nauk, 58:4 (2003), 3–28 | DOI | MR | Zbl

[2] Evdokimov A. A. Perezhogin A. L., “Discrete dynamical systems of a circulant type with linear functions at the vertices of a network”, J. Appl. Industr. Math., 6:2 (2012), 160–166 | DOI | MR | Zbl

[3] Merekin Yu. V., “The Shannon function for calculating the Arnold complexity of length $2^n$ binary words”, J. Appl. Industr. Math., 7:2 (2013), 229–233 | DOI | MR

[4] Merekin Yu. V., “On the computational complexity of the Arnold complexity of binary words”, Asian-Eur. J. Math., 2:4 (2009), 641–648 | DOI | MR

[5] Merekin Yu. V., “On the computation of Arnold complexity of length $2^n$ binary words”, Asian-Eur. J. Math., 4:2 (2011), 295–300 | DOI | MR | Zbl

[6] Merekin Yu. V., “Fast computation of the Arnold complexity of length $2^n$ binary words”, Southeast Asian Bull. Math., 36:6 (2012), 855–862 | MR | Zbl