A threshold property of quadratic Boolean functions
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 52-58
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f$ be a Boolean function in $n$ variables and for any affine subspace $L$ of dimension $\lceil n/2\rceil$ either $f$ is affine on all shifts of $L$ or $f$ is not affine on any shift of $L$. It is proved that the algebraic degree of $f$ can be more than 2 only if there is no affine subspace of dimension $\lceil n/2\rceil$ that $f$ is affine on. Bibliogr. 8.
Keywords:
Boolean function, quadratic Boolean function, bent function.
@article{DA_2014_21_2_a3,
author = {N. A. Kolomeec},
title = {A threshold property of quadratic {Boolean} functions},
journal = {Diskretnyj analiz i issledovanie operacij},
pages = {52--58},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DA_2014_21_2_a3/}
}
N. A. Kolomeec. A threshold property of quadratic Boolean functions. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 52-58. http://geodesic.mathdoc.fr/item/DA_2014_21_2_a3/