Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DA_2014_21_2_a0, author = {V. L. Beresnev and A. A. Melnikov}, title = {Branch-and-bound method for the competitive facility location problem with prescribed choice of suppliers}, journal = {Diskretnyj analiz i issledovanie operacij}, pages = {3--23}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DA_2014_21_2_a0/} }
TY - JOUR AU - V. L. Beresnev AU - A. A. Melnikov TI - Branch-and-bound method for the competitive facility location problem with prescribed choice of suppliers JO - Diskretnyj analiz i issledovanie operacij PY - 2014 SP - 3 EP - 23 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DA_2014_21_2_a0/ LA - ru ID - DA_2014_21_2_a0 ER -
%0 Journal Article %A V. L. Beresnev %A A. A. Melnikov %T Branch-and-bound method for the competitive facility location problem with prescribed choice of suppliers %J Diskretnyj analiz i issledovanie operacij %D 2014 %P 3-23 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DA_2014_21_2_a0/ %G ru %F DA_2014_21_2_a0
V. L. Beresnev; A. A. Melnikov. Branch-and-bound method for the competitive facility location problem with prescribed choice of suppliers. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 3-23. http://geodesic.mathdoc.fr/item/DA_2014_21_2_a0/
[1] Beresnev V. L., “Local search algorithms for the problem of competitive location of enterprises”, Automation and Remote Control, 73:3 (2012), 425–439 | DOI
[2] Beresnev V. L., “Upper bounds for objective functions of discrete competitive facility location problems”, J. Appl. Industr. Math., 3:4 (2009), 419–432 | DOI | MR | Zbl
[3] Beresnev V. L., Diskretnye zadachi razmescheniya i polinomy ot bulevykh peremennykh, Izd-vo in-ta matematiki, Novosibirsk, 2005, 408 pp.
[4] Beresnev V. L., Goncharov E. N., Mel'nikov A. A., “Local search with a generalized neighborhood in the optimization problem for pseudo-Boolean functions”, J. Appl. Industr. Math., 6:1 (2012), 22–30 | DOI | MR | Zbl
[5] Beresnev V. L., Melnikov A. A., “Approximate algorithms for the competitive facility location problems”, J. Appl. Industr. Math., 5:2 (2011), 180–190 | DOI | MR | Zbl
[6] Vasil'ev I. L., Klimentova K. B., “The branch and cut method for the facility location problem with clients' preferences”, J. Appl. Indust. Math., 4:3 (2010), 441–454 | DOI | MR | Zbl
[7] Vasilyev I. L., Klimentova K. B., Kochetov Yu. A., “New lower bounds for the facility location problem with clients' preferences”, Comput. Math. Math. Phys., 49:6 (2009), 1010–1020 | DOI | MR | Zbl
[8] Kononov A. V., Kochetov Yu. A., Plyasunov A. V., “Competitive facility location models”, Comput. Math. Math. Phys., 49:6 (2009), 994–1009 | DOI | MR | Zbl
[9] Plyasunov A. V., Panin A. A., “Zadacha tsenoobrazovaniya. Ch. 1. Tochnye i priblizhënnye algoritmy resheniya”, Diskret. analiz i issled. operatsii, 19:5 (2012), 83–100 | MR
[10] Plyasunov A. V., Panin A. A., “Zadacha tsenoobrazovaniya. Ch. 2. Vychislitelnaya slozhnost”, Diskret. analiz i issled. operatsii, 19:6 (2012), 56–71 | MR
[11] Beresnev V., “Branch-and-bound algorithm for competitive facility location problems”, Comput. Oper. Res., 40 (2013), 2062–2070 | DOI | MR
[12] Canovas L., Garcia S., Labbe M., Marin A., “A strengthened formulation for the simple plant location problem with order”, Oper. Res. Lett., 35 (2007), 141–150 | DOI | MR | Zbl
[13] Davydov I., Kochetov Yu., Plyasunov A., “On the complexity of the $(r|p)$-centroid problem in the plane”, TOP, (accepted) | DOI
[14] Dempe S., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002, 332 pp. | MR | Zbl
[15] Hammer P. L., Rudeanu S., “Pseudo-Boolean programming”, Oper. Res., 17 (1969), 233–261 | DOI | MR | Zbl
[16] Krarup J., Pruzan P. M., “The simple plant location problem: survey and synthesis”, Eur. J. Oper. Res., 12:1 (1983), 36–81 | DOI | MR | Zbl
[17] Mitten L. G., “Branch-and-bound method: general formulation and properties”, Oper. Res., 18 (1970), 24–34 | DOI | MR | Zbl
[18] Stackelberg H., The theory of the market economy, Oxford Univ. Press, Oxford, 1952, 289 pp.