Branch-and-bound method for the competitive facility location problem with prescribed choice of suppliers
Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model is being considered, where two competing sides sequentially open their facilities with the goal to capture customers and maximize profit. The model can be written as the bi-level integer programming problem. Optimal noncooperative solutions are considered as optimal solutions of the problem. In order to provide appproximate and exact solutions of the problem the branch-and-bound method is proposed. Computational experiments show capability of the method to solve small and medium instances. Tab. 2, bibliogr. 18.
Keywords: bi-level programming, optimal noncooperative solution, pseudo-Boolean function, branch-and-bound method.
@article{DA_2014_21_2_a0,
     author = {V. L. Beresnev and A. A. Melnikov},
     title = {Branch-and-bound method for the competitive facility location problem with prescribed choice of suppliers},
     journal = {Diskretnyj analiz i issledovanie operacij},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DA_2014_21_2_a0/}
}
TY  - JOUR
AU  - V. L. Beresnev
AU  - A. A. Melnikov
TI  - Branch-and-bound method for the competitive facility location problem with prescribed choice of suppliers
JO  - Diskretnyj analiz i issledovanie operacij
PY  - 2014
SP  - 3
EP  - 23
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DA_2014_21_2_a0/
LA  - ru
ID  - DA_2014_21_2_a0
ER  - 
%0 Journal Article
%A V. L. Beresnev
%A A. A. Melnikov
%T Branch-and-bound method for the competitive facility location problem with prescribed choice of suppliers
%J Diskretnyj analiz i issledovanie operacij
%D 2014
%P 3-23
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DA_2014_21_2_a0/
%G ru
%F DA_2014_21_2_a0
V. L. Beresnev; A. A. Melnikov. Branch-and-bound method for the competitive facility location problem with prescribed choice of suppliers. Diskretnyj analiz i issledovanie operacij, Tome 21 (2014) no. 2, pp. 3-23. http://geodesic.mathdoc.fr/item/DA_2014_21_2_a0/

[1] Beresnev V. L., “Local search algorithms for the problem of competitive location of enterprises”, Automation and Remote Control, 73:3 (2012), 425–439 | DOI

[2] Beresnev V. L., “Upper bounds for objective functions of discrete competitive facility location problems”, J. Appl. Industr. Math., 3:4 (2009), 419–432 | DOI | MR | Zbl

[3] Beresnev V. L., Diskretnye zadachi razmescheniya i polinomy ot bulevykh peremennykh, Izd-vo in-ta matematiki, Novosibirsk, 2005, 408 pp.

[4] Beresnev V. L., Goncharov E. N., Mel'nikov A. A., “Local search with a generalized neighborhood in the optimization problem for pseudo-Boolean functions”, J. Appl. Industr. Math., 6:1 (2012), 22–30 | DOI | MR | Zbl

[5] Beresnev V. L., Melnikov A. A., “Approximate algorithms for the competitive facility location problems”, J. Appl. Industr. Math., 5:2 (2011), 180–190 | DOI | MR | Zbl

[6] Vasil'ev I. L., Klimentova K. B., “The branch and cut method for the facility location problem with clients' preferences”, J. Appl. Indust. Math., 4:3 (2010), 441–454 | DOI | MR | Zbl

[7] Vasilyev I. L., Klimentova K. B., Kochetov Yu. A., “New lower bounds for the facility location problem with clients' preferences”, Comput. Math. Math. Phys., 49:6 (2009), 1010–1020 | DOI | MR | Zbl

[8] Kononov A. V., Kochetov Yu. A., Plyasunov A. V., “Competitive facility location models”, Comput. Math. Math. Phys., 49:6 (2009), 994–1009 | DOI | MR | Zbl

[9] Plyasunov A. V., Panin A. A., “Zadacha tsenoobrazovaniya. Ch. 1. Tochnye i priblizhënnye algoritmy resheniya”, Diskret. analiz i issled. operatsii, 19:5 (2012), 83–100 | MR

[10] Plyasunov A. V., Panin A. A., “Zadacha tsenoobrazovaniya. Ch. 2. Vychislitelnaya slozhnost”, Diskret. analiz i issled. operatsii, 19:6 (2012), 56–71 | MR

[11] Beresnev V., “Branch-and-bound algorithm for competitive facility location problems”, Comput. Oper. Res., 40 (2013), 2062–2070 | DOI | MR

[12] Canovas L., Garcia S., Labbe M., Marin A., “A strengthened formulation for the simple plant location problem with order”, Oper. Res. Lett., 35 (2007), 141–150 | DOI | MR | Zbl

[13] Davydov I., Kochetov Yu., Plyasunov A., “On the complexity of the $(r|p)$-centroid problem in the plane”, TOP, (accepted) | DOI

[14] Dempe S., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002, 332 pp. | MR | Zbl

[15] Hammer P. L., Rudeanu S., “Pseudo-Boolean programming”, Oper. Res., 17 (1969), 233–261 | DOI | MR | Zbl

[16] Krarup J., Pruzan P. M., “The simple plant location problem: survey and synthesis”, Eur. J. Oper. Res., 12:1 (1983), 36–81 | DOI | MR | Zbl

[17] Mitten L. G., “Branch-and-bound method: general formulation and properties”, Oper. Res., 18 (1970), 24–34 | DOI | MR | Zbl

[18] Stackelberg H., The theory of the market economy, Oxford Univ. Press, Oxford, 1952, 289 pp.